A mechanistic inter-species comparison of spatial contrast sensitivity

Jarvis, J. and Wathes, C.M. 2008. A mechanistic inter-species comparison of spatial contrast sensitivity. Vision Research: an international journal for functional aspects of vision. 48 (21), pp. 2284-2292. doi:10.1016/j.visres.2008.07.002

TitleA mechanistic inter-species comparison of spatial contrast sensitivity
AuthorsJarvis, J. and Wathes, C.M.
Abstract

The validity of the Rovamo–Barten modulation transfer function model for describing spatial contrast sensitivity in vertebrates was examined using published data for the human, macaque, cat, goldfish, pigeon and rat. Under photopic conditions, the model adequately described overall contrast sensitivity for changes in both stimulus luminance and stimulus size for each member of this diverse range of species. From this examination, optical, retinal and post-retinal neural processes subserving contrast sensitivity were quantified. An important retinal process is lateral inhibition and values of its associated point spread function (PSF) were obtained for each species. Some auxiliary contrast sensitivity data obtained from the owl monkey were included for these calculations. Modeled values of the lateral inhibition PSF were found to correlate well with ganglion cell receptive field surround size measurements obtained directly from electrophysiology. The range of vertebrates studied was then further extended to include the squirrel monkey, tree shrew, rabbit, chicken and eagle. To a first approximation, modeled estimates of lateral inhibition PSF width were found to be inversely proportional to the square root of ganglion cell density. This finding is consistent with a receptive field surround diameter that changes in direct proportion to the distance between ganglion cells for central vision. For the main species examined, contrast sensitivity is considerably less than that for the human. Although this is due in part to a reduction in the performance of both optical and retinal mechanisms, the model indicates that poor cortical detection efficiency plays a significant role.

JournalVision Research: an international journal for functional aspects of vision
Journal citation48 (21), pp. 2284-2292
ISSN0042-6989
YearSep 2008
PublisherPergamon
Digital Object Identifier (DOI)doi:10.1016/j.visres.2008.07.002
Publication dates
PublishedSep 2008

Related outputs

Bridging the Gap Between Imaging Performance and Image Quality Measures
Fry, E., Triantaphillidou, S., Jacobson, R., Jarvis, J. and Fagard-Jenkin, R. 2018. Bridging the Gap Between Imaging Performance and Image Quality Measures. IS&T Electronic Imaging Symposium 2018 - Image Quality System Performance XV. San Francisco, CA, USA 28 Jan - 01 Feb 2018 The Society of Imaging Science and Technology. doi:10.2352/ISSN.2470-1173.2018.12.IQSP-231

Image quality optimization, via application of contextual contrast sensitivity and discrimination functions
Fry, E., Triantaphillidou, S., Jarvis, J. and Gupta, G. 2015. Image quality optimization, via application of contextual contrast sensitivity and discrimination functions. SPIE Electronic Imaging: Image Quality and System Performance XII. San Fransisco Jan 2015 SPIE. doi:10.1117/12.2082937

Contrast sensitivity and discrimination in pictorial images
Triantaphillidou, S., Jarvis, J. and Gupta, G. 2014. Contrast sensitivity and discrimination in pictorial images. in: SPIE Proceedings 9016, Image Quality and System Performance XI SPIE.

Defining human contrast sensitivity and discrimination from complex imagery
Triantaphillidou, S., Jarvis, J., Gupta, G. and Rana, H. 2013. Defining human contrast sensitivity and discrimination from complex imagery. in: SPIE proceedings: Optics and Photonics for Counterterrorism, Crime Fighting and Defence IX; and Optical Materials and Biomaterials in Security and Defence Systems Technology X, 89010C SPIE.

Contrast sensitivity and discrimination of complex scenes
Triantaphillidou, S., Jarvis, J. and Gupta, G. 2013. Contrast sensitivity and discrimination of complex scenes. in: Burns, P.D. and Triantaphillidou, S. (ed.) Image Quality and System Performance X SPIE.

Mechanistic modeling of vertebrate spatial contrast sensitivity and acuity at low luminance
Jarvis, J. and Wathes, C.M. 2012. Mechanistic modeling of vertebrate spatial contrast sensitivity and acuity at low luminance. Visual Neuroscience. 29 (3), pp. 169-181. doi:10.1017/S0952523812000120

Stimulus luminance and the spatial acuity of domestic fowl (Gallus g. domesticus)
Gover, N., Jarvis, J., Abeyesinghe, S.M. and Wathes, C.M. 2009. Stimulus luminance and the spatial acuity of domestic fowl (Gallus g. domesticus). Vision Research: an international journal for functional aspects of vision. 49 (23), pp. 2747-2753. doi:10.1016/j.visres.2009.08.011

Measuring and modelling the spatial contrast sensitivity of the chicken (Gallus g. domesticus)
Jarvis, J., Abeyesinghe, S.M., McMahon, C.E. and Wathes, C.M. 2009. Measuring and modelling the spatial contrast sensitivity of the chicken (Gallus g. domesticus). Vision Research: an international journal for functional aspects of vision. 49 (11), pp. 1448-1454. doi:10.1016/j.visres.2009.02.019

Calculating luminous flux and lighting levels for domesticated mammals and birds
Saunders, J.E., Jarvis, J. and Wathes, C.M. 2008. Calculating luminous flux and lighting levels for domesticated mammals and birds. Animal: the international journal of animal biosciences. 2 (6), pp. 921-932. doi:10.1017/S1751731108002012

On the calculation of optical performance factors from vertebrate spatial contrast sensitivity
Jarvis, J. and Wathes, C.M. 2007. On the calculation of optical performance factors from vertebrate spatial contrast sensitivity. Vision Research: an international journal for functional aspects of vision. 47 (17), pp. 2259-2271. doi:10.1016/j.visres.2007.04.015

Light, vision and the welfare of poultry
Prescott, N.B., Wathes, C.M. and Jarvis, J. 2003. Light, vision and the welfare of poultry. Animal Welfare. 12 (2), pp. 269-288.

Permalink - https://westminsterresearch.westminster.ac.uk/item/911q3/a-mechanistic-inter-species-comparison-of-spatial-contrast-sensitivity


Share this
Tweet
Email