Interactions between environment, fruit water relations and fruit growth

Thompson, D.S., Smith, P.W., Davies, W.J. and Ho, L.C. 1999. Interactions between environment, fruit water relations and fruit growth. Acta Horticulturae. 487, pp. 65-70.

TitleInteractions between environment, fruit water relations and fruit growth
AuthorsThompson, D.S., Smith, P.W., Davies, W.J. and Ho, L.C.
Abstract

In many plant organs the rate of growth decreases when reduced water availability leads to a reduction of the hydrostatic pressure of cells in the tissue (the turgor pressure, P). We have therefore examined the effects of changes of temperature, light and water availability on fruit growth rate and P in tomato fruit. Fruit and leaf mid-rib P values have been determined using a non-destructive method called a pressure probe. The fruit growth rate was simultaneously measured using linearly variable differential transformers (LVDTs). Temperature was regulated by a specially constructed growth cabinet.

Although increased temperatures generally lead to increased fruit growth rates (e.g. Pearce et al., 1993), fruit P decreased after the temperature was increased. Therefore such increases in fruit growth rate are not due to elevated P. Furthermore increases in fruit growth rate with temperature are much smaller at temperatures above 25°C and it seems likely that, under these circumstances, decreased fruit P limits fruit growth rate. Diurnal changes in light intensity had no effect on fruit P or fruit growth rate provided the temperature was unchanged. Therefore, effects of light on fruit growth are indirect. Fruit water relations were found to be remarkably isolated from the water relations of the rest of the plant. During soil drying episodes, fruit P and water potential (psi) were largely unaffected until leaf psi fell below fruit psi, when fruit P decreased rapidly. Some plants were also grown in special enclosed pots to allow pressurisation of the plants' roots. Soil drying episodes and root pressurisation experiments demonstrated that fruit water relations of such plants were even less dependent on whole plant water relations than in plants grown in normal "open" pots. These results suggest that the root environment may affect fruit and pedicel vascular development.

JournalActa Horticulturae
Journal citation487, pp. 65-70
ISSN0567-7572
Year1999
PublisherInternational Society for Horticultural Science
Publication dates
Published1999

Related outputs

Plant Cell Wall Hydration and Plant Physiology: An Exploration of the Consequences of Direct Effects of Water Deficit on the Plant Cell Wall
Thompson, D. and Islam, A. 2021. Plant Cell Wall Hydration and Plant Physiology: An Exploration of the Consequences of Direct Effects of Water Deficit on the Plant Cell Wall. Plants. 10 (7), p. e1263. https://doi.org/10.3390/plants10071263

Untangling tensions: a consideration of the epidermal-growth-control and developmental-hydraulic interpretations of tissue tension
Thompson, D.S. 2009. Untangling tensions: a consideration of the epidermal-growth-control and developmental-hydraulic interpretations of tissue tension. Journal of Plant Physiology. 166 (16), pp. 1717-1719. https://doi.org/10.1016/j.jplph.2009.08.005

Commentary on "my embarrassment at not knowing Heinich". Untangling tensions: a consideration of epidermal-growth-control and developmental-hydraulic interpretations of tissue tension.
Thompson, D.S. 2009. Commentary on "my embarrassment at not knowing Heinich". Untangling tensions: a consideration of epidermal-growth-control and developmental-hydraulic interpretations of tissue tension. Journal of Plant Physiology. 166 (16), pp. 1713-1716. https://doi.org/10.1016/j.jplph.2009.08.004

Space and time in the plant cell wall: relationships between cell type, cell wall rheology and cell function
Thompson, D.S. 2008. Space and time in the plant cell wall: relationships between cell type, cell wall rheology and cell function. Annals of Botany. 108 (2), pp. 203-211. https://doi.org/10.1093/aob/mcm138

Cell wall water content has a direct effect on extensibility in growing hypocotyls of sunflower (Helianthus annuus L.)
Evered, C., Majevadia, B. and Thompson, D.S. 2007. Cell wall water content has a direct effect on extensibility in growing hypocotyls of sunflower (Helianthus annuus L.). Journal of Experimental Botany. 58 (12), pp. 3361-3371. https://doi.org/10.1093/jxb/erm183

The force in spinach
Thompson, D.S. 2006. The force in spinach. Guardian.

How do cell walls regulate plant growth?
Thompson, D.S. 2005. How do cell walls regulate plant growth? Journal of Experimental Botany. 56 (419), pp. 2275-2285. https://doi.org/10.1093/jxb/eri247

Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit
Thompson, D.S. 2001. Extensiometric determination of the rheological properties of the epidermis of growing tomato fruit. Journal of Experimental Botany. 52 (359), pp. 1291-1301. https://doi.org/10.1093/jexbot/52.359.1291

Peroxidase isozyme patterns in the skin of maturing tomato fruit
Andrews, J., Malone, M., Thompson, D.S., Ho, L.C. and Burton, K.S. 2000. Peroxidase isozyme patterns in the skin of maturing tomato fruit. Plant, Cell & Environment. 23 (4), pp. 415-422. https://doi.org/10.1046/j.1365-3040.2000.00555.x

Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants' chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture
Davies, W.J., Bacon, M.A., Thompson, D.S., Sobeih, W. and González Rodríguez, L. 2000. Regulation of leaf and fruit growth in plants growing in drying soil: exploitation of the plants' chemical signalling system and hydraulic architecture to increase the efficiency of water use in agriculture. Journal of Experimental Botany. 51 (530), pp. 1617-1626. https://doi.org/10.1093/jexbot/51.350.1617

Regulation of tomato fruit growth by epidermal cell wall enzymes
Thompson, D.S., Davies, W.J. and Ho, L.C. 1998. Regulation of tomato fruit growth by epidermal cell wall enzymes. Plant, Cell & Environment. 21 (6), pp. 589-599. https://doi.org/10.1046/j.1365-3040.1998.00308.x

Transdifferentiation of mature cortical cells to functional abscission cells in bean
McManus, M.T., Thompson, D.S., Merriman, C., Lyne, L. and Osborne, D.J. 1998. Transdifferentiation of mature cortical cells to functional abscission cells in bean. Plant Physiology. 116 (3), pp. 891-899. https://doi.org/10.​1104/​pp.​116.​3.​891

Manipulation of growth of horticultural crops under environmental stress
Davies, W.J., Thompson, D.S. and Taylor, J.E. 1998. Manipulation of growth of horticultural crops under environmental stress. in: Cockshull, K.E., Gray, D., Seymour, G.B. and Thomas, B. (ed.) Genetic and environmental manipulation of horticultural crops CABI Publishing. pp. 154-174

Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit
Thompson, D.S., Wilkinson, S., Bacon, M.A. and Davies, W.J. 1997. Multiple signals and mechanisms that regulate leaf growth and stomatal behaviour during water deficit. Physiologia Plantarum. 100 (2), pp. 303-313. https://doi.org/10.1111/j.1399-3054.1997.tb04787.x

Can cell wall peroxidase activity explain the leaf growth response of Lolium temulentum L. during drought?
Bacon, M.A., Thompson, D.S. and Davies, W.J. 1997. Can cell wall peroxidase activity explain the leaf growth response of Lolium temulentum L. during drought? Journal of Experimental Botany. 48 (12), pp. 2075-2085. https://doi.org/10.1093/jxb/48.12.2075

A role for the stele in inter tissue signalling in the initiation of abscission in bean leaves (Phaseolus vulgaris L.)
Thompson, D.S. and Osborne, D.J. 1994. A role for the stele in inter tissue signalling in the initiation of abscission in bean leaves (Phaseolus vulgaris L.). Plant Physiology. 105 (1), pp. 341-347. https://doi.org/​10.​1104/​pp.​105.​1.​341

Target or non-target: hormonal signal perception and response in the determination of cell performance
Osborne, D.J. and Thompson, D.S. 1992. Target or non-target: hormonal signal perception and response in the determination of cell performance. in: Karssen, C.M., van Loon, L.C. and Vreugdenhil, D. (ed.) Proceedings in Plant Growth Regulation Kluwer Academic Publishers. pp. 237-247

Permalink - https://westminsterresearch.westminster.ac.uk/item/94627/interactions-between-environment-fruit-water-relations-and-fruit-growth


Share this

Usage statistics

129 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.