Robust stability of a diamond of multivariate polynomials

Ramirez Sosa Moran, M.I. and Kharitonov, V.L. 1998. Robust stability of a diamond of multivariate polynomials. American Control Conference. Philadelphia, PA 21 Jun 1998 IEEE . https://doi.org/10.1109/ACC.1998.703273

TitleRobust stability of a diamond of multivariate polynomials
Authors Ramirez Sosa Moran, M.I. and Kharitonov, V.L.
TypeConference paper
Abstract

In this paper it is shown that in order to check the stability of a diamond family of multivariate polynomials there is no need to check the stability of m.2(2+m) distinguished edges of the family, it being necessary and sufficient to verify that (m+1)2(m+1) distinguished polynomials are stable

KeywordsMultivariate polynomials, robust stability, multidimensional systems.
Year1998
ConferenceAmerican Control Conference
PublisherIEEE
Publication dates
PublishedJun 1998
Journal citation6, pp. 3555 - 3558
ISSN0743-1619
Book titleProceedings of the 1998 American Control Conference, 1998.
ISBN0780345304
Digital Object Identifier (DOI)https://doi.org/10.1109/ACC.1998.703273
Web address (URL) of conference proceedingshttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5651

Related outputs

An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila México by dynamic simulation
Juárez-Maldonado, A., De-Alba-Romenus, K., Ramirez Sosa Moran, M.I., Benavides-Mendoza, A. and Robledo-Torres, V. 2010. An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila México by dynamic simulation . 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010). Tuxtla Gutiérrez, Chiapas, México. September 8-10, 2010 08 Sep 2010 IEEE . https://doi.org/10.1109/ICEEE.2010.5608663

Identification of a nonlinear dynamic biological model using the dominant parameter selection method
Ioslovish, I., Ramirez Sosa Moran, M.I. and Gutman Per-O 2010. Identification of a nonlinear dynamic biological model using the dominant parameter selection method. Journal of the Franklin Institute. 347 (6), pp. 1001-1014. https://doi.org/10.1016/j.jfranklin.2009.11.007

A Single-Frame Super-Resolution Innovative Approach
Ramirez Sosa Moran, M.I., Torres-Méndez, L.A. and Castelán, M. 2007. A Single-Frame Super-Resolution Innovative Approach. in: MICAI 2007: Advances in Artificial Intelligence Springer. pp. 640-649

Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal
Ramirez Sosa Moran, M.I., Castelán, M., Almazán-Delfín, A.J. and Torres-Méndez, L.A. 2007. Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal. in: MICAI 2007: Advances in Artificial Intelligence Springer. pp. 758-768

Nonlinear Dynamic Lettuce Growth Model: Parameter Selection and Estimation for N-Limited Experiments
Ioslovish, I., Ramirez Sosa Moran, M.I. and Gutman Per-O 2005. Nonlinear Dynamic Lettuce Growth Model: Parameter Selection and Estimation for N-Limited Experiments . Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. Seville, Spain, December 12-15, 2005 12 Dec 2005 IEEE . https://doi.org/10.1109/CDC.2005.1583043

Robust stability of a diamond of complex multivariate polynomials
Ramirez Sosa Moran, M.I. 2001. Robust stability of a diamond of complex multivariate polynomials. American Control Conference, 2001. Proceedings of the 2001. Arlington, VA 25 Jun 2001 IEEE . https://doi.org/10.1109/ACC.2001.945723

Robust Stability of Multivariate Polynomials, Part 3: Frequency Domain Approach
Kharitonov, V.L., Ramirez Sosa Moran, M.I. and Torres-Munoz, J.A. 2000. Robust Stability of Multivariate Polynomials, Part 3: Frequency Domain Approach. Multidimensional Systems and Signal Processing. 11 (3), pp. 213-231. https://doi.org/10.1023/A:1008434513790

On multivariate zero exclusion principle: application to stability radius
Ramirez Sosa Moran, M.I., Torres-Munoz, J.A. and Kharitonov, V.L. 1999. On multivariate zero exclusion principle: application to stability radius . Decision and Control. Phoenix, AZ 07 Dec 1999 IEEE . https://doi.org/10.1109/CDC.1999.833256

Robust Stability of Multivariate Polynomials, Part 2: Polytopic Coefficient Variations
Kharitonov, V.L., Torres-Munoz, J.A. and Ramirez Sosa Moran, M.I. 1999. Robust Stability of Multivariate Polynomials, Part 2: Polytopic Coefficient Variations. Multidimensional Systems and Signal Processing. 10 (1), pp. 21-32. https://doi.org/10.1023/A:1008437801340

Stability and robust stability of multivariate polynomials
Kharitonov, V.L., Torres-Munoz, J.A. and Ramirez Sosa Moran, M.I. 1997. Stability and robust stability of multivariate polynomials. Decision and Control, 1997., Proceedings of the 36th IEEE Conference on . San Diego, CA 10 Dec 1997 IEEE . https://doi.org/10.1109/CDC.1997.652346

Permalink - https://westminsterresearch.westminster.ac.uk/item/9w397/robust-stability-of-a-diamond-of-multivariate-polynomials


Share this

Usage statistics

93 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.