On multivariate zero exclusion principle: application to stability radius

Ramirez Sosa Moran, M.I., Torres-Munoz, J.A. and Kharitonov, V.L. 1999. On multivariate zero exclusion principle: application to stability radius . Decision and Control. Phoenix, AZ 07 Dec 1999 IEEE . https://doi.org/10.1109/CDC.1999.833256

TitleOn multivariate zero exclusion principle: application to stability radius
Authors Ramirez Sosa Moran, M.I., Torres-Munoz, J.A. and Kharitonov, V.L.
TypeConference paper
Abstract

A new formulation of the zero exclusion principle is presented and it is applied to the study of robust stability of multivariate polynomials. It has been concluded that the stability radius of a stable polynomial coincides with its strict-sense stability radius. The structured stability radius is also considered

Keywordsmultivariate polynomials, robust stability, zero exclusion principle, stability radius
Year1999
ConferenceDecision and Control
PublisherIEEE
Publication dates
PublishedDec 1999
Journal citation5, pp. 4531 - 4536
ISSN0191-2216
Book titleProceedings of the 38th IEEE Conference on Decision and Control, 1999.
ISBN0780352505
Digital Object Identifier (DOI)https://doi.org/10.1109/CDC.1999.833256
Web address (URL) of conference proceedingshttp://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6713

Related outputs

An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila México by dynamic simulation
Juárez-Maldonado, A., De-Alba-Romenus, K., Ramirez Sosa Moran, M.I., Benavides-Mendoza, A. and Robledo-Torres, V. 2010. An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila México by dynamic simulation . 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010). Tuxtla Gutiérrez, Chiapas, México. September 8-10, 2010 08 Sep 2010 IEEE . https://doi.org/10.1109/ICEEE.2010.5608663

Identification of a nonlinear dynamic biological model using the dominant parameter selection method
Ioslovish, I., Ramirez Sosa Moran, M.I. and Gutman Per-O 2010. Identification of a nonlinear dynamic biological model using the dominant parameter selection method. Journal of the Franklin Institute. 347 (6), pp. 1001-1014. https://doi.org/10.1016/j.jfranklin.2009.11.007

A Single-Frame Super-Resolution Innovative Approach
Ramirez Sosa Moran, M.I., Torres-Méndez, L.A. and Castelán, M. 2007. A Single-Frame Super-Resolution Innovative Approach. in: MICAI 2007: Advances in Artificial Intelligence Springer. pp. 640-649

Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal
Ramirez Sosa Moran, M.I., Castelán, M., Almazán-Delfín, A.J. and Torres-Méndez, L.A. 2007. Example-Based Face Shape Recovery Using the Zenith Angle of the Surface Normal. in: MICAI 2007: Advances in Artificial Intelligence Springer. pp. 758-768

Nonlinear Dynamic Lettuce Growth Model: Parameter Selection and Estimation for N-Limited Experiments
Ioslovish, I., Ramirez Sosa Moran, M.I. and Gutman Per-O 2005. Nonlinear Dynamic Lettuce Growth Model: Parameter Selection and Estimation for N-Limited Experiments . Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. Seville, Spain, December 12-15, 2005 12 Dec 2005 IEEE . https://doi.org/10.1109/CDC.2005.1583043

Robust stability of a diamond of complex multivariate polynomials
Ramirez Sosa Moran, M.I. 2001. Robust stability of a diamond of complex multivariate polynomials. American Control Conference, 2001. Proceedings of the 2001. Arlington, VA 25 Jun 2001 IEEE . https://doi.org/10.1109/ACC.2001.945723

Robust Stability of Multivariate Polynomials, Part 3: Frequency Domain Approach
Kharitonov, V.L., Ramirez Sosa Moran, M.I. and Torres-Munoz, J.A. 2000. Robust Stability of Multivariate Polynomials, Part 3: Frequency Domain Approach. Multidimensional Systems and Signal Processing. 11 (3), pp. 213-231. https://doi.org/10.1023/A:1008434513790

Robust Stability of Multivariate Polynomials, Part 2: Polytopic Coefficient Variations
Kharitonov, V.L., Torres-Munoz, J.A. and Ramirez Sosa Moran, M.I. 1999. Robust Stability of Multivariate Polynomials, Part 2: Polytopic Coefficient Variations. Multidimensional Systems and Signal Processing. 10 (1), pp. 21-32. https://doi.org/10.1023/A:1008437801340

Robust stability of a diamond of multivariate polynomials
Ramirez Sosa Moran, M.I. and Kharitonov, V.L. 1998. Robust stability of a diamond of multivariate polynomials. American Control Conference. Philadelphia, PA 21 Jun 1998 IEEE . https://doi.org/10.1109/ACC.1998.703273

Stability and robust stability of multivariate polynomials
Kharitonov, V.L., Torres-Munoz, J.A. and Ramirez Sosa Moran, M.I. 1997. Stability and robust stability of multivariate polynomials. Decision and Control, 1997., Proceedings of the 36th IEEE Conference on . San Diego, CA 10 Dec 1997 IEEE . https://doi.org/10.1109/CDC.1997.652346

Permalink - https://westminsterresearch.westminster.ac.uk/item/9w39w/on-multivariate-zero-exclusion-principle-application-to-stability-radius


Share this

Usage statistics

88 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.