Image Quality Evaluation in Lossy Compressed Images

Allen, E. 2017. Image Quality Evaluation in Lossy Compressed Images. PhD thesis University of Westminster Centre for Research and Education in Arts and Media https://doi.org/10.34737/q0vq5

TitleImage Quality Evaluation in Lossy Compressed Images
TypePhD thesis
AuthorsAllen, E.
Abstract

This research focuses on the quantification of image quality in lossy compressed images, exploring the impact of digital artefacts and scene characteristics upon image quality evaluation.

A subjective paired comparison test was implemented to assess perceived quality of JPEG 2000 against baseline JPEG over a range of different scene types. Interval scales were generated for both algorithms, which indicated a subjective preference for JPEG 2000, particularly at low bit rates, and these were confirmed by an objective distortion measure. The subjective results did not follow this trend for some scenes however, and both algorithms were found to be scene dependent as a result of the artefacts produced at high compression rates. The scene dependencies were explored from the interval scale results, which allowed scenes to be grouped according to their susceptibilities to each of the algorithms. Groupings were correlated with scene measures applied in a linked study.

A pilot study was undertaken to explore perceptibility thresholds of JPEG 2000 of the same set of images. This work was developed with a further experiment to investigate the thresholds of perceptibility and acceptability of higher resolution JPEG 2000 compressed images. A set of images was captured using a professional level full-frame Digital Single Lens Reflex camera, using a raw workflow and carefully controlled image-processing pipeline. The scenes were quantified using a set of simple scene metrics to classify them according to whether they were average, higher than, or lower than average, for a number of scene properties known to affect image compression and perceived image quality; these were used to make a final selection of test images. Image fidelity was investigated using the method of constant stimuli to quantify perceptibility thresholds and just noticeable differences (JNDs) of perceptibility. Thresholds and JNDs of acceptability were also quantified to explore suprathreshold quality evaluation. The relationships between the two thresholds were examined and correlated with the results from the scene measures, to identify more or less susceptible scenes. It was found that the level and differences between the two thresholds was an indicator of scene dependency and could be predicted by certain types of scene characteristics.

A third study implemented the soft copy quality ruler as an alternative psychophysical method, by matching the quality of compressed images to a set of images varying in a single attribute, separated by known JND increments of quality. The imaging chain and image processing workflow were evaluated using objective measures of tone reproduction and spatial frequency response. An alternative approach to the creation of ruler images was implemented and tested, and the resulting quality rulers were used to evaluate a subset of the images from the previous study. The quality ruler was found to be successful in identifying scene susceptibilities and observer sensitivity.

The fourth investigation explored the implementation of four different image quality metrics. These were the Modular Image Difference Metric, the Structural Similarity Metric, The Multi-scale Structural Similarity Metric and the Weighted Structural Similarity Metric. The metrics were tested against the subjective results and all were found to have linear correlation in terms of predictability of image quality.

Year2017
File
PublisherUniversity of Westminster
Digital Object Identifier (DOI)https://doi.org/10.34737/q0vq5

Related outputs

Perceptibility and acceptability of JPEG 2000 compressed images of various scene types
Allen, E., Triantaphillidou, S. and Jacobson, R.E. 2014. Perceptibility and acceptability of JPEG 2000 compressed images of various scene types. SPIE Electronic Imaging: Image Quality and System Performance XI. San Francisco, USA Jan 2014 SPIE. https://doi.org/10.1117/12.2042582

Permalink - https://westminsterresearch.westminster.ac.uk/item/q0vq5/image-quality-evaluation-in-lossy-compressed-images


Share this

Usage statistics

234 total views
255 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.