Stock Market Prediction Using Evolutionary Support Vector Machines: An Application To The ASE20 Index

Karathanasopoulos, A., Theofilatos, K.A., Sermpinis, D., Dunis, C., Mitra, S. and Stasinakis, C. 2016. Stock Market Prediction Using Evolutionary Support Vector Machines: An Application To The ASE20 Index. European Journal of Finance. 22 (12), pp. 1145-1163. https://doi.org/10.1080/1351847X.2015.1040167

TitleStock Market Prediction Using Evolutionary Support Vector Machines: An Application To The ASE20 Index
TypeJournal article
AuthorsKarathanasopoulos, A., Theofilatos, K.A., Sermpinis, D., Dunis, C., Mitra, S. and Stasinakis, C.
Abstract

The main motivation for this paper is to introduce a novel hybrid method for the prediction of the directional movement of financial assets with an application to the ASE20 Greek stock index. Specifically, we use an alternative computational methodology named evolutionary support vector machine (ESVM) stock predictor for modeling and trading the ASE20 Greek stock index extending the universe of the examined inputs to include autoregressive inputs and moving averages of the ASE20 index and other four financial indices. The proposed hybrid method consists of a combination of genetic algorithms with support vector machines modified to uncover effective short-term trading models and overcome the limitations of existing methods. For comparison purposes, the trading performance of the ESVM stock predictor is benchmarked with four traditional strategies (a naïve strategy, a buy and hold strategy, a moving average convergence/divergence and an autoregressive moving average model), and a multilayer perceptron neural network model. As it turns out, the proposed methodology produces a higher trading performance, even during the financial crisis period, in terms of annualized return and information ratio, while providing information about the relationship between the ASE20 index and DAX30, NIKKEI225, FTSE100 and S&P500 indices.

JournalEuropean Journal of Finance
Journal citation22 (12), pp. 1145-1163
ISSN1351-847X
1466-4364
Year2016
PublisherTaylor & Francis
Accepted author manuscript
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1080/1351847X.2015.1040167
Publication dates
Published online29 Jul 2015
Published in print2016

Related outputs

Catastrophe Bond Pricing In The Primary Market: The Issuer Effect And Pricing Factors
Chatoro, M, Mitra, S., Pantelous, A.A. and Shao, J. 2023. Catastrophe Bond Pricing In The Primary Market: The Issuer Effect And Pricing Factors. International Review of Financial Analysis. 85 102431. https://doi.org/10.1016/j.irfa.2022.102431

A Real Options Approach To Measuring Freedom In Sen’s Capabilities Approach
Mitra, S. 2022. A Real Options Approach To Measuring Freedom In Sen’s Capabilities Approach. International Journal of Sustainable Economy. 14 (1), pp. 98-110. https://doi.org/10.1504/IJSE.2022.119716

Optimal Feedback Control of Stock Prices Under Credit Risk Dynamics
Mitra, S., Jinghai Shao and Karathanasopoulos, Andreas 2022. Optimal Feedback Control of Stock Prices Under Credit Risk Dynamics. Annals of Operations Research. 313, pp. 1285-1318. https://doi.org/10.1007/s10479-021-04002-6

Keynesian Resurgence: Financial Stimulus And Contingent Claims Modelling
Clark, E., Mitra, S. and Jokung, O. 2020. Keynesian Resurgence: Financial Stimulus And Contingent Claims Modelling. International Journal of Mathematics in Operational Research. 17 (2), pp. 199-232. https://doi.org/10.1504/IJMOR.2020.109701

Downside risk measurement in regime switching stochastic volatility
Mitra, S. 2020. Downside risk measurement in regime switching stochastic volatility. Journal of Computational and Applied Mathematics. 378 112845. https://doi.org/10.1016/j.cam.2020.112845

Health Care Investment: The Case of Multiple Sources of Risk
Jokung, O. and Mitra, S. 2020. Health Care Investment: The Case of Multiple Sources of Risk. Asia-Pacific Financial Markets. 27, pp. 231-255. https://doi.org/10.1007/s10690-019-09291-3

An analysis of dollar cost averaging and market timing investment strategies
Lars Kirkby, J., Mitra, S. and Nguyen, D. 2020. An analysis of dollar cost averaging and market timing investment strategies. European Journal of Operational Research. 286 (3), pp. 1168-1186. https://doi.org/10.1016/j.ejor.2020.04.055

FinTech revolution: the impact of management information systems upon relative firm value and risk
Mitra, S. and Karathanasopoulos, A. 2020. FinTech revolution: the impact of management information systems upon relative firm value and risk. Journal of Banking and Financial Technology. 4, p. 175–187. https://doi.org/10.1007/s42786-020-00023-0

Ensemble Models in Forecasting Financial Markets
Karathanasopoulos, A., Mitra, S., Lo, C.C., Zaremba, A. and Osman, M. 2019. Ensemble Models in Forecasting Financial Markets. Journal of Computational Finance. 23 (3), pp. 101-119. https://doi.org/10.21314/JCF.2019.374

Big Data And PAC Learning In The Presence Of Noise: Implications For Financial Risk Management
Chinthalapati, V.L.R., Mitra, S. and Serguieva, A. 2019. Big Data And PAC Learning In The Presence Of Noise: Implications For Financial Risk Management. International Journal of Artificial Intelligence. 17 (1), pp. 34-56.

Risk lovers, mixed risk loving and the preference to combine good with good
Jokung, O. and Mitra, S. 2019. Risk lovers, mixed risk loving and the preference to combine good with good. International Journal of Management and Applied Science. 11 (4), pp. 295-313.

Post Global Financial Crisis Modelling: Credit Risk For Firms That Are Too Big To Fail
Clark, E., Mitra, S. and Jokung, O. 2019. Post Global Financial Crisis Modelling: Credit Risk For Firms That Are Too Big To Fail. International Journal of Financial Markets and Derivatives. 7 (1), pp. 15-39. https://doi.org/10.1504/IJFMD.2019.101235

Political Risk Modelling and Measurement From Stochastic Volatility Models
Mitra, S. 2019. Political Risk Modelling and Measurement From Stochastic Volatility Models. International Journal of Sustainable Economy. 11 (2), pp. 184-218. https://doi.org/10.1504/IJSE.2019.099064

Regression Based Scenario Generation: Applications For Performance Management
Mitra, S., Lim, S. and Karathanasopoulos, A. 2019. Regression Based Scenario Generation: Applications For Performance Management. Operations Research Perspectives. 6 100095. https://doi.org/10.1016/j.orp.2018.100095

Firm Value And The Impact of Operational Management
Mitra, S. and Karathanasopoulos, A. 2019. Firm Value And The Impact of Operational Management. Asia-Pacific Financial Markets. 26, pp. 61-85. https://doi.org/10.1007/s10690-018-9258-1

Stock-ADR Arbitrage: Microstructure Risk
Mitra, S. 2019. Stock-ADR Arbitrage: Microstructure Risk. Journal of International Financial Markets, Institutions and Money. 63 101132. https://doi.org/10.1016/j.intfin.2019.08.004

Efficient Option Risk Measurement With Reduced Model Risk
Mitra, S. 2017. Efficient Option Risk Measurement With Reduced Model Risk. Insurance: Mathematics and Economics. 72, pp. 163-174. https://doi.org/10.1016/j.insmatheco.2016.09.006

Operational Risk: Emerging Markets, Sectors and Measurement
Mitra, S., Karathanasopoulos, A., Sermpinis, G., Dunis, C. and Hood, J. 2015. Operational Risk: Emerging Markets, Sectors and Measurement . European Journal of Operational Research. 241 (1), pp. 122-132. https://doi.org/10.1016/j.ejor.2014.08.021

Permalink - https://westminsterresearch.westminster.ac.uk/item/v2348/stock-market-prediction-using-evolutionary-support-vector-machines-an-application-to-the-ase20-index


Share this

Usage statistics

105 total views
192 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.