Automorphicity and mean-periodicity
Oliver, T. 2017. Automorphicity and mean-periodicity. Journal of the Mathematical Society of Japan. 69 (1), pp. 25-51. https://doi.org/10.2969/jmsj/06910025
Oliver, T. 2017. Automorphicity and mean-periodicity. Journal of the Mathematical Society of Japan. 69 (1), pp. 25-51. https://doi.org/10.2969/jmsj/06910025
Title | Automorphicity and mean-periodicity |
---|---|
Type | Journal article |
Authors | Oliver, T. |
Abstract | If C is a smooth projective curve over a number field k, then, under fair hypotheses, its L-function admits meromorphic continuation and satisfies the anticipated functional equation if and only if a related function is X-mean-periodic for some appropriate functional space X. Building on the work of Masatoshi Suzuki for modular elliptic curves, we will explore the dual relationship of this result to the widely believed conjecture that such L-functions should be automorphic. More precisely, we will directly show the orthogonality of the matrix coefficients of GL2g-automorphic representations to the vector spaces T(h(S,{ki},s)), which are constructed from the Mellin transforms f(S,{ki},s) of certain products of arithmetic zeta functions ζ(S,2s)∏iζ(ki,s), where S→Spec(Ok) is any proper regular model of C and {ki} is a finite set of finite extensions of k. To compare automorphicity and mean-periodicity, we use a technique emulating the Rankin–Selberg method, in which the function h(S,{ki},s)) plays the role of an Eisenstein series, exploiting the spectral interpretation of the zeros of automorphic L-functions |
Journal | Journal of the Mathematical Society of Japan |
Journal citation | 69 (1), pp. 25-51 |
ISSN | 0025-5645 |
1881-1167 | |
Year | 2017 |
Publisher | Mathematical Society of Japan |
Digital Object Identifier (DOI) | https://doi.org/10.2969/jmsj/06910025 |
Web address (URL) | https://projecteuclid.org/journals/journal-of-the-mathematical-society-of-japan/volume-69/issue-1/Automorphicity-and-mean-periodicity/10.2969/jmsj/06910025.full |
Publication dates | |
Published | Jan 2017 |