Zeta integrals on arithmetic surfaces

Oliver, T. 2016. Zeta integrals on arithmetic surfaces. St Petersburg Math. J.. 27, pp. 1003-1028. https://doi.org/10.1090/spmj/1432

TitleZeta integrals on arithmetic surfaces
TypeJournal article
AuthorsOliver, T.
Abstract

Given a (smooth, projective, geometrically connected) curve over a number field, one expects its Hasse–Weil L-function, a priori defined only on a right half-plane, to admit meromorphic continuation to C and satisfy a simple functional equation. Aside from exceptional circumstances, these analytic properties remain largely conjectural. One may formulate these conjectures in terms of zeta functions of two-dimensional arithmetic schemes, on which one has non-locally compact “analytic” adelic structures admitting a form of “lifted” harmonic analysis first defined by Fesenko for elliptic curves. In this paper we generalize his global results to certain curves of arbitrary genus by invoking a renormalizing factor which may be interpreted as the zeta function of a relative projective line. We are lead to a new interpretation of the gamma factor (defined in terms of the Hodge structures at archimedean places) and a (two-dimensional) adelic interpretation of the “mean-periodicity correspondence”, which is comparable to the conjectural automorphicity of Hasse–Weil L-functions.

JournalSt Petersburg Math. J.
Journal citation27, pp. 1003-1028
Year2016
PublisherAmerican Mathematical Society
Digital Object Identifier (DOI)https://doi.org/10.1090/spmj/1432
Web address (URL)https://www.ams.org/journals/spmj/2016-27-06/S1061-0022-2016-01432-0/
Publication dates
Published online30 Sep 2016

Related outputs

Convergence of Kac-Moody Eisenstein series over a function field
Oliver, T., Lee, K.-H. and Liu, D. 2025. Convergence of Kac-Moody Eisenstein series over a function field. Selecta Mathematica.

Murmurations of Dirichlet characters
Oliver, T., Lee, K.-H. and Pozdnyakov, A. 2024. Murmurations of Dirichlet characters. International Mathematics Research Notices. 2025 (1) rnae277. https://doi.org/10.1093/imrn/rnae277

Murmurations of elliptic curves
Oliver, T., He, Y.-H., Lee, K.-H. and Pozdnyakov, A. 2024. Murmurations of elliptic curves. Experimental Mathematics. Advanced online publication. https://doi.org/10.1080/10586458.2024.2382361

Machine learning for number theory: unsupervised learning with L-functions
Oliver, T. 2024. Machine learning for number theory: unsupervised learning with L-functions. 8th International Congress on Mathematical Software (ICMS2024). Durham University 22 - 25 Jul 2024 Springer. https://doi.org/10.1007/978-3-031-64529-7_21

PCA, arithmetic, and murmurations
Oliver, T. 2024. PCA, arithmetic, and murmurations. Murmurations in Arithmetic. ICERM (Brown University) 06 - 08 Jul 2023 World Scientific Publishing. https://doi.org/10.1142/S2810939224400021

Preprint: Murmurations of Dirichlet Characters
Lee, K.-H., Oliver, T. and Pozdnyakov, A. 2023. Preprint: Murmurations of Dirichlet Characters. arXiv. https://doi.org/10.48550/arXiv.2307.00256

Machine Learning Class Numbers of Real Quadratic Fields
Oliver, T., Amir, M., He, Y.-H., Lee, K.-H. and Sultanow, E. 2023. Machine Learning Class Numbers of Real Quadratic Fields. International Journal of Data Science in the Mathematical Sciences. 1 (2), pp. 107-134. https://doi.org/10.1142/s2810939223500016

Counting points on elliptic curves
Oliver, T. and Wuthrich, C. 2023. Counting points on elliptic curves. LMS newsletter. 509, pp. 31-35. https://doi.org/10.1112/NLMS

Supervised learning of arithmetic invariants
Oliver, T. 2023. Supervised learning of arithmetic invariants. in: Yang-Hui He (ed.) Machine Learning in Pure Mathematics and Theoretical Physics World Scientific Publishing. pp. 331-363

Machine learning invariants of arithmetic curves
He, Y.-H., Lee, K.-H. and Oliver, T. 2023. Machine learning invariants of arithmetic curves. Journal of Symbolic Computation. 115, pp. 478-491. https://doi.org/10.1016/j.jsc.2022.08.017

Ratios of Artin L-functions
Hochfilzer, L. and Oliver, T. 2022. Ratios of Artin L-functions. Journal of Number Theory. 236, pp. 1-40. https://doi.org/10.1016/j.jnt.2021.07.007

Preprint: Murmurations of Elliptic Curves
He, Y.-H., Lee, K.-H., Oliver, T. and Pozdnyakov, A. 2022. Preprint: Murmurations of Elliptic Curves. arXiv. https://doi.org/10.48550/arxiv.2204.10140

Preprint: Machine Learning Class Numbers of Real Quadratic Fields
Amir, M., He, Y.-H., Lee, K.-H., Oliver, T. and Sultanow, E. 2022. Preprint: Machine Learning Class Numbers of Real Quadratic Fields. arXiv. https://doi.org/10.48550/arxiv.2209.09283

Preprint: Convergance of Kac-Moody Eisenstein Series over a Function Field
Lee, K.-H., Liu, D. and Oliver, T. 2022. Preprint: Convergance of Kac-Moody Eisenstein Series over a Function Field. arXiv. https://doi.org/10.48550/arxiv.2203.08628

Machine-learning the Sato-Tate conjecture
He, Y.-H., Lee, K.-H. and Oliver, T. 2022. Machine-learning the Sato-Tate conjecture. Journal of Symbolic Computation. 111, pp. 61-72. https://doi.org/10.1016/j.jsc.2021.11.002

Ratios of Artin L-functions
Hochfilzer, L. and Oliver, T. 2022. Ratios of Artin L-functions. Journal of Number Theory. 236, pp. 1-40. https://doi.org/10.1016/j.jnt.2021.07.007

Machine-learning number fields
He, Y.-H., Lee, K.-H. and Oliver, T. 2022. Machine-learning number fields. Mathematics, Computation and Geometry of Data. 2 (1), pp. 49-66. https://doi.org/10.4310/MCGD.2022.v2.n1.a2

Character expansion of Kac–Moody correction factors
Lee, K.-H., Liu, D and Oliver, T. 2021. Character expansion of Kac–Moody correction factors. Pacific Journal of Mathematics. 313 (1), pp. 159-183. https://doi.org/10.2140/pjm.2021.313.159

Preprint: Twisting moduli for gl(2)
Bedert, B., Cooper, G., Oliver, T. and Zhang, P. 2020. Preprint: Twisting moduli for gl(2). arXiv. https://doi.org/10.48550/arxiv.2003.02557

Preprint: Machine-Learning the Sato-Tate Conjecture
He, Y.-H., Lee, K.-H. and Oliver, T. 2020. Preprint: Machine-Learning the Sato-Tate Conjecture. arXiv. https://doi.org/10.48550/arxiv.2010.01213

Preprint: Machine-learning number fields
He, Y.-H., Lee, K.-H. and Oliver, T. 2020. Preprint: Machine-learning number fields. arXiv. https://doi.org/10.48550/arxiv.2011.08958

Preprint: Machine-learning arithmetic curves
He, Y.-H., Lee, K.-H. and Oliver, T. 2020. Preprint: Machine-learning arithmetic curves. arXiv. https://doi.org/10.48550/arxiv.2012.04084

Twisting moduli for GL(2)
Bedert, B., Cooper, G., Oliver, T. and Zhang, P. 2020. Twisting moduli for GL(2). Journal of Number Theory. 217, pp. 142-162. https://doi.org/10.1016/j.jnt.2020.04.008

Weil's converse theorem for Maass forms and cancellation of zeros
Oliver, T. and Neururer, M. 2020. Weil's converse theorem for Maass forms and cancellation of zeros. Acta Arithmetica. 196, pp. 387-422. https://doi.org/10.4064/aa190811-3-2

Preprint: Ratios of Artin L-functions
Hochfilzer, L. and Oliver, T. 2019. Preprint: Ratios of Artin L-functions. arXiv. https://doi.org/10.48550/arxiv.1910.02821

Preprint: Weil's Converse Theorem for Maass Forms and Cancellation of Zeros
Neururer, M. and Oliver, T. 2018. Preprint: Weil's Converse Theorem for Maass Forms and Cancellation of Zeros. arXiv. https://doi.org/10.48550/arxiv.1809.06586

A conjectural extension of Hecke’s converse theorem
Bettin, S., Bober, J., Booker, A., Conrey, B., Lee, M., Molteni, G., Oliver, T., Platt, D. and Steiner, R. 2018. A conjectural extension of Hecke’s converse theorem. The Ramanujan Journal. 47, pp. 659-684. https://doi.org/10.1007/s11139-017-9953-y

A conjectural extension of hecke's converse theorem
Bettin, S., Bober, J.W., Booker, A.R., Conrey, B., Lee, M., Molteni, G., Oliver, T., Platt, D.J. and Steiner, R.S. 2017. A conjectural extension of hecke's converse theorem. arXiv. https://doi.org/10.48550/arxiv.1704.02570

Notes on low degree L-data
Oliver, T. 2017. Notes on low degree L-data. Analytic Number Theory and Related Areas. Research Institute for Mathematical Sciences, Kyoto University 04 - 06 Nov 2015

Automorphicity and mean-periodicity
Oliver, T. 2017. Automorphicity and mean-periodicity. Journal of the Mathematical Society of Japan. 69 (1), pp. 25-51. https://doi.org/10.2969/jmsj/06910025

Higher Dimensional Adeles, Mean-Periodicity and Zeta Functions of Arithmetic Surfaces
Oliver, T. 2014. Higher Dimensional Adeles, Mean-Periodicity and Zeta Functions of Arithmetic Surfaces. PhD thesis University of Nottingham School of Mathematical Sciences

Permalink - https://westminsterresearch.westminster.ac.uk/item/w4q4x/zeta-integrals-on-arithmetic-surfaces


Share this

Usage statistics

81 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.