The urothelium: a multi-faceted barrier against a harsh environment

Nazila V. Jafari and Jennifer L. Rohn 2022. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunology. 15 (6), pp. 1127-1142. https://doi.org/10.1038/s41385-022-00565-0

TitleThe urothelium: a multi-faceted barrier against a harsh environment
TypeJournal article
AuthorsNazila V. Jafari and Jennifer L. Rohn
Abstract

All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.

JournalMucosal Immunology
Journal citation15 (6), pp. 1127-1142
ISSN1933-0219
Year2022
PublisherElsevier
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1038/s41385-022-00565-0
Web address (URL)https://doi.org/10.1038/s41385-022-00565-0
Publication dates
PublishedNov 2022

Related outputs

An immunoresponsive three-dimensional urine-tolerant human urothelial (3D-UHU) model to study urinary tract infection
Nazila V. Jafari and Jennifer L. Rohn 2023. An immunoresponsive three-dimensional urine-tolerant human urothelial (3D-UHU) model to study urinary tract infection. Frontiers in Cellular and Infection Microbiology. 13 1128132. https://doi.org/10.3389/fcimb.2023.1128132

Severe Acute Respiratory Syndrome Type 2‐Causing Coronavirus: Variants and Preventive Strategies
Mehmet Onur Aydogdu, Jennifer L. Rohn, Nazila V. Jafari, Francis Brako, Shervanthi Homer‐Vanniasinkam and Mohan Edirisinghe 2022. Severe Acute Respiratory Syndrome Type 2‐Causing Coronavirus: Variants and Preventive Strategies. Advanced Science. 9 (11) 2104495. https://doi.org/10.1002/advs.202104495

Novel antibiotic-loaded particles conferring eradication of deep tissue bacterial reservoirs for the treatment of chronic urinary tract infection
Wai K. Lau, Dhanuson Dharmasena, Harry Horsley, Nazila Jafari, James Malone-Lee, Eleanor Stride, Mohan Edirisinghe and Jennifer L. Rohn 2020. Novel antibiotic-loaded particles conferring eradication of deep tissue bacterial reservoirs for the treatment of chronic urinary tract infection. Journal of Controlled Release. 328, pp. 490-502. https://doi.org/10.1016/j.jconrel.2020.08.048

Effect of Environment on the Evolutionary Trajectories and Growth Characteristics of Antibiotic-Resistant Escherichia coli Mutants
Alasdair T. M. Hubbard, Nazila Jafari, Nicholas Feasey, Jennifer L. Rohn and Adam P. Roberts 2019. Effect of Environment on the Evolutionary Trajectories and Growth Characteristics of Antibiotic-Resistant Escherichia coli Mutants. Frontiers in Microbiology. 10 2001. https://doi.org/10.3389/fmicb.2019.02001

Chronic Rejection of Cardiac Allografts Is Associated With Increased Lymphatic Flow and Cellular Trafficking
Lindsey A. Edwards, Anna K. Nowocin, Nazila Jafari, Lucy L. Meader, Kathryn Brown, Aurélien Sarde, Carolyn Lam, Alex Murray and Wilson Wong 2017. Chronic Rejection of Cardiac Allografts Is Associated With Increased Lymphatic Flow and Cellular Trafficking. Circulation. 137, pp. 488-503. https://doi.org/10.1161/circulationaha.117.028533

Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber
Nazila Jafari, Sarah A. Kuehne, Nigel P. Minton, Elaine Allan and Mona Bajaj-Elliott 2016. Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber. Anaerobe. https://doi.org/10.1016/j.anaerobe.2015.12.007

Host Immunity to Clostridium difficile PCR Ribotype 017 Strains
Jafari, N., Mario Songane, Richard A. Stabler, Mamoun Elawad, Brendan W. Wren, Elaine Allan and Mona Bajaj-Elliott 2014. Host Immunity to Clostridium difficile PCR Ribotype 017 Strains. Infection and Immunity. 82 (12), pp. 4989-4996. https://doi.org/10.1128/iai.02605-14

Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s)
Nazila Jafari, Sarah A. Kuehne, Clare E. Bryant, Mamoun Elawad, Brendan W. Wren, Nigel P. Minton, Elaine Allan and Mona Bajaj-Elliott 2013. Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS ONE. 8 (7) e69846. https://doi.org/10.1371/journal.pone.0069846

Human Intestinal Epithelial Response(s) to Clostridium difficile
Jafari, N., Allan, E. and Bajaj-Elliott, M. 2010. Human Intestinal Epithelial Response(s) to Clostridium difficile. in: Mullany, P. and Roberts, A.P. (ed.) Clostridium difficile Methods and Protocols Humana Totowa. pp. 135-146

Permalink - https://westminsterresearch.westminster.ac.uk/item/w85q2/the-urothelium-a-multi-faceted-barrier-against-a-harsh-environment


Share this

Usage statistics

44 total views
13 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.