Abstract | This paper compares the non-deltaic, riparian-flooded forests of the Orinoco and Amazon River basins. Ecological relationships between these forests and their environments that can be useful in establishing schemes for biodiversity conservation are identified. Adaptations of species to flow seasonality, flooding intensity, sedimentation pattern and nutrient depletion are described. The variability and diversity of riparian-flooded forests is related to (i) landscape evolution (regional-scale, long-term), (ii) water quality (basin scale, long-term) and (iii) hydrology and geomorphology (sector-scale, medium-term). The floristic analysis has produced a preliminary list of 242 tree species common to the riparian-flooded forests of both basins. This relatively high number of species is related to connectivity between the riparian corridors of both basins and the effective operation of dispersal mechanisms. Highly oligotrophic environments add uniqueness at the regional scale through the evolution of endemic species presenting adaptations not only to flooding but also to nutrient depletion. The process of genetic diversification and the evolution of genotypes adapted to flooding are suggested to explain longitudinal gradients at tributary junctions and floodplain-upland ecotones where current fluvial dynamics are unpredictable over ecological time scales. The paper presents information that may be used to devise appropriate measures to evaluate sites for riparian biodiversity conservation and management. |
---|