Abstract | Electricity price forecasting is considered as an important tool for energy-related utilities and power generation industries. The deregulation of power market, as well as the competitive financial environment, which have introduced new market players in this field, makes the electricity price forecasting problem a demanding mission. The main focus of this paper is to investigate the performance of asymmetric neuro-fuzzy network models for day-ahead electricity price forecasting. The proposed model has been developed from existing Takagi–Sugeno–Kang fuzzy systems by substituting the IF part of fuzzy rules with an asymmetric Gaussian function. In addition, a clustering method is utilised as a pre-processing scheme to identify the initial set and adequate number of clusters and eventually the number of rules in the proposed model. The results corresponding to the minimum and maximum electricity price have indicated that the proposed forecasting scheme could be considered as an improved tool for the forecasting accuracy. |
---|