Abstract | Molecularly imprinted polymers (MIPs) were developed to replace natural antibodies with a cost-effective and durable synthetic material. Molecular imprinting of proteins conventionally utilizes the whole protein as the template, which is complex (as many different epitopes may be imprinted) and expensive. In this work, seven peptides (13–18 amino acids) were synthesized and used as templates for the imprinting and recognition of Regenerating Protein 1 (REG1). REG1 is involved in the proliferation and differentiation of diverse cell types, and was recently described as a urinary biomarker for pancreatic ductal adenocarcinoma (PDAC). Peptide-imprinted poly(ethylene-co-vinyl alcohol)s (PIPs), containing four different mole fractions of ethylene were cast on screen-printed electrodes to find the optimum composition for both the sensing and the extraction of REG1 in an E. coli culture medium. Peptides with fewer than 16 amino acids and two or three aromatic and hydrophobic groups have a higher affinity for MIPs of poly(ethylene-co-vinyl alcohol) (EVAL) with 27 mol% of ethylene, while those with four aromatic and hydrophobic groups have a higher affinity for MIPs with EVALs that contain 32 mol% of ethylene. The peptide / EVAL combination that maximized both imprinting effectiveness and response to REG1B was the sequence NEDRETWVDADLY imprinted into 32 mol% EVAL. This EVAL composition and template peptide were then modified by incorporation of magnetic nanoparticles, thus extending applications for PIPs to include extraction of REG1 protein from E. coli culture medium. |
---|