The Formyl Peptide Receptor 2 Regulates Microglial Phenotype Through Immunometabolism: Implications for Alzheimer’s Disease

Wickstead, E. 2019. The Formyl Peptide Receptor 2 Regulates Microglial Phenotype Through Immunometabolism: Implications for Alzheimer’s Disease. PhD thesis University of Westminster School of Life Sciences

TitleThe Formyl Peptide Receptor 2 Regulates Microglial Phenotype Through Immunometabolism: Implications for Alzheimer’s Disease
TypePhD thesis
AuthorsWickstead, E.
Abstract

Microglia are key players in the pathology of Alzheimer’s disease (AD), driving chronic inflammation, oxidative stress, and the altered metabolism seen in the brains of patients. With clinical trials continuing to fail, new approaches towards drug development are critical. Strategies to reduce microglial activation may therefore be a viable therapeutic approach to tackling AD. Formyl peptide receptor 2 (Fpr2), which drives peripheral inflammatory resolution, is expressed in microglia. However, its functional role in neuroinflammation is unclear. This thesis provides evidence to support the peripheral findings of Fpr2 stimulation, wherein it may also hold promise for exploitation as a therapeutic for neurodegenerative disorders, including AD. We also highlight novel findings surrounding the modulation of both oxidative stress and microglial metabolism associated with Fpr2 activation.
Under inflammatory conditions, we report that selective agonists for Fpr2 modulate the microglial inflammatory response, actively shifting from a pro-inflammatory to a pro-resolving phenotype, emphasised by the reduction of pro-inflammatory cytokines and concomitant increases in both pro-resolving cytokines and phagocytosis. Metabolic shifting away from glycolysis was also observed for pro-resolving microglia. Moreover, we describe for the first time that Fpr2 completely reverses reactive oxygen species (ROS) production from the mitochondria and NADPH oxidase enzymes following an inflammatory stimulus.
We also highlight that the toxic oligomeric amyloid (oAβ) facilitates microglial ROS production and subsequent metabolic changes without triggering an inflammatory response. oAβ facilitated NADPH oxidase activation, which in turn resulted in the activation of glucose 6-phosphate dehydrogenase (G6PD), the rate limiting step for the pentose phosphate pathway. This metabolic pathway is responsible for producing NADPH, which in turn NADPH oxidases exploit for further ROS production. These changes resulted in noticeable reductions in both microglial glycolysis and oxidative phosphorylation. We present data underlining that Fpr2/3 stimulation reverses oAβ-induced ROS production, with a resultant reduction in G6PD activity and the return of homeostatic glycolysis. These oAβ-induced microglial changes triggered the apoptosis of SH-SY5Y cells in co-culture with BV-2 microglia. However, supporting our interest in Fpr2/3 for therapeutic approaches to neurodegenerative diseases, post-treatment with a select agonist for the receptor successfully prevented apoptosis of these neuronal like SH-SY5Y cells.
This original data unveils novel functions of Fpr2/3 in the central nervous system (CNS), supplementing the well-established pro-resolving functions the receptor facilitates within the periphery. The combination of pro-resolving, anti-oxidative, immunometabolic and anti-apoptotic functions of Fpr2/3 support the exploitation of this receptor for therapeutic research into multiple different CNS disorders, including AD.

Year2019
File
File Access Level
Open (open metadata and files)
Publication dates
PublishedJul 2019
File3. Wickstead PhD Thesis.pdf

Related outputs

Quin-C1: a selective Fpr2 agonist that shifts microglial phenotype following LPS and Aβ1-42 exposure
Wickstead, E., Getting, S.J., Biggs, C.S. and McArthur, S. 2018. Quin-C1: a selective Fpr2 agonist that shifts microglial phenotype following LPS and Aβ1-42 exposure. Alzheimer's Research UK Conference. London 20 - 21 Mar 2018

Reversal of β-amyloid induced microglial activation by an agonist of Fpr2
Wickstead, E., Getting, S.J., Biggs, C.S. and McArthur, S. 2017. Reversal of β-amyloid induced microglial activation by an agonist of Fpr2. British Pharmacological Society: Pharmacology 2017. London 11 - 13 Dec 2017

Fpr2: a novel drug target to tackle oxidative stress and inflammation in Alzheimer’s disease
Wickstead, E. 2017. Fpr2: a novel drug target to tackle oxidative stress and inflammation in Alzheimer’s disease. Alzheimer's Research UK Conference. Aberdeen 14 - 15 Mar 2017

Activation of the pro-resolving receptor Fpr2 attenuates inflammatory microglial activation
Wickstead, E., Getting, S.J., Biggs, C.S. and McArthur, S. 2017. Activation of the pro-resolving receptor Fpr2 attenuates inflammatory microglial activation. BNA Festival of Neuroscience. Birmingham 10 - 13 Apr 2017 Sage. doi:10.1177/2398212817705279

Fpr2 and neuroinflammation: selective agonists with synergistic anti-oxidative and pro-resolving effects
Wickstead, E., Getting, S.J., Biggs, C.S. and McArthur, S. 2017. Fpr2 and neuroinflammation: selective agonists with synergistic anti-oxidative and pro-resolving effects. World Congress on Inflammation. London 08 - 12 Jul 2017

The formyl peptide receptor 2 (Fpr2) agonist, Compound 43 (Cpd43), attenuates and promotes the release of pro-inflammatory, and anti-inflammatory cytokines, respectively
Wickstead, E., Getting, S.J. and McArthur, S. 2016. The formyl peptide receptor 2 (Fpr2) agonist, Compound 43 (Cpd43), attenuates and promotes the release of pro-inflammatory, and anti-inflammatory cytokines, respectively. British Pharmacological Society: Pharmacology 2016. London 13 - 15 Dec 2016

Permalink - https://westminsterresearch.westminster.ac.uk/item/qy292/the-formyl-peptide-receptor-2-regulates-microglial-phenotype-through-immunometabolism-implications-for-alzheimer-s-disease


Share this
Tweet
Email

Usage statistics

10 total views
12 total downloads
0 views this month
1 downloads this month
These values are for the period from September 2nd 2018, when this repository was created

Export as