Abstract | Microglia are key players in the pathology of Alzheimer’s disease (AD), driving chronic inflammation, oxidative stress, and the altered metabolism seen in the brains of patients. With clinical trials continuing to fail, new approaches towards drug development are critical. Strategies to reduce microglial activation may therefore be a viable therapeutic approach to tackling AD. Formyl peptide receptor 2 (Fpr2), which drives peripheral inflammatory resolution, is expressed in microglia. However, its functional role in neuroinflammation is unclear. This thesis provides evidence to support the peripheral findings of Fpr2 stimulation, wherein it may also hold promise for exploitation as a therapeutic for neurodegenerative disorders, including AD. We also highlight novel findings surrounding the modulation of both oxidative stress and microglial metabolism associated with Fpr2 activation. Under inflammatory conditions, we report that selective agonists for Fpr2 modulate the microglial inflammatory response, actively shifting from a pro-inflammatory to a pro-resolving phenotype, emphasised by the reduction of pro-inflammatory cytokines and concomitant increases in both pro-resolving cytokines and phagocytosis. Metabolic shifting away from glycolysis was also observed for pro-resolving microglia. Moreover, we describe for the first time that Fpr2 completely reverses reactive oxygen species (ROS) production from the mitochondria and NADPH oxidase enzymes following an inflammatory stimulus. We also highlight that the toxic oligomeric amyloid (oAβ) facilitates microglial ROS production and subsequent metabolic changes without triggering an inflammatory response. oAβ facilitated NADPH oxidase activation, which in turn resulted in the activation of glucose 6-phosphate dehydrogenase (G6PD), the rate limiting step for the pentose phosphate pathway. This metabolic pathway is responsible for producing NADPH, which in turn NADPH oxidases exploit for further ROS production. These changes resulted in noticeable reductions in both microglial glycolysis and oxidative phosphorylation. We present data underlining that Fpr2/3 stimulation reverses oAβ-induced ROS production, with a resultant reduction in G6PD activity and the return of homeostatic glycolysis. These oAβ-induced microglial changes triggered the apoptosis of SH-SY5Y cells in co-culture with BV-2 microglia. However, supporting our interest in Fpr2/3 for therapeutic approaches to neurodegenerative diseases, post-treatment with a select agonist for the receptor successfully prevented apoptosis of these neuronal like SH-SY5Y cells. This original data unveils novel functions of Fpr2/3 in the central nervous system (CNS), supplementing the well-established pro-resolving functions the receptor facilitates within the periphery. The combination of pro-resolving, anti-oxidative, immunometabolic and anti-apoptotic functions of Fpr2/3 support the exploitation of this receptor for therapeutic research into multiple different CNS disorders, including AD. |
---|