An Improved in Vitro Blood-Brain Barrier Model: Rat Brain Endothelial Cells Co-Cultured With Astrocytes

Abbott, N.J., Dolman, D.E.M., Drndarski, S. and Fredriksson, S.M. 2012. An Improved in Vitro Blood-Brain Barrier Model: Rat Brain Endothelial Cells Co-Cultured With Astrocytes. Methods in Molecular Biology. 814, pp. 415-430. https://doi.org/10.1007/978-1-61779-452-0_28

TitleAn Improved in Vitro Blood-Brain Barrier Model: Rat Brain Endothelial Cells Co-Cultured With Astrocytes
TypeJournal article
AuthorsAbbott, N.J., Dolman, D.E.M., Drndarski, S. and Fredriksson, S.M.
Abstract

In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2 weeks, using pre-frozen astrocytes, from isolation of RBECs to generation of high-resistance/low-permeability RBEC monolayers.

KeywordsBlood–brain barrier Rat brain endothelial cells Co-culture Astrocyte In vitro model Permeability Tight junction
JournalMethods in Molecular Biology
Journal citation814, pp. 415-430
ISSN1064-3745
Year2012
PublisherHumana Press
Digital Object Identifier (DOI)https://doi.org/10.1007/978-1-61779-452-0_28
Web address (URL)https://link.springer.com/protocol/10.1007%2F978-1-61779-452-0_28
Publication dates
Published online11 Nov 2011
Published in print2012

Related outputs

Stroke recovery in rats after 24h-delayed intramuscular neurotrophin-3 infusion
Duricki, D.A., Drndarski, S., Bernanos, B., Tobias Wood, T., Bosch, K., Chen, Q., Shine, H.D., Simmons, C., Williams, S.C.R., McMahon, S.B., Begley, D.J., Cash, D. and Moon, L.D.F. 2019. Stroke recovery in rats after 24h-delayed intramuscular neurotrophin-3 infusion. Annals of Neurology. 85 (1), pp. 32-46. https://doi.org/10.1002/ana.25386

The Blood-Brain Barrier in Psychosis
Pollak, T.A., Drndarski, S., Stone, M.J., David, A.S., McGuire, P. and Abbott, N.J. 2018. The Blood-Brain Barrier in Psychosis. The Lancet Psychiatry. 5 (1), pp. 79-92. https://doi.org/10.1016/S2215-0366(17)30293-6

Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses
Kirkegaard, T., Gray, J., Priestman, D.A., Wallom, K.-L., Atkins, J., Olsen, O.D., Klein, A., Drndarski, S., Petersen, N.H.T., Ingemann, L., Smith, D.A., Morris, L., Bornæs, C., Jørgensen, S.H., Williams, I., Hinsby, A., Arenz, C., Begley, D., Jäättelä, M. and Platt, F.M. 2016. Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine. 8 (355), p. 355ra188 355ra188. https://doi.org/10.1126/scitranslmed.aad9823

Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery
Knock, G.A., Shaifta, Y., Snetkov, V.A., Vowles, B., Drndarski, S., Ward, J.P. and Aaronson, P.I. 2008. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery. Cardiovascular Research. 77 (3), pp. 570-9. https://doi.org/10.1093/cvr/cvm073

Role of SRC-Family Kinases in Hypoxic Vasoconstriction of Rat Pulmonary Artery
Knock, G.A., Snetkov, V.A., Shaifta, Y., Drndarski, S., Ward, J.P. and Aaronson, P.I. 2008. Role of SRC-Family Kinases in Hypoxic Vasoconstriction of Rat Pulmonary Artery. Cardiovascular Research. 80 (3), pp. 453-62. https://doi.org/10.1093/cvr/cvn209

Constriction of Pulmonary Artery by Peroxide: Role of Ca2+ Release and PKC
Pourmahram, G.E., Snetkov, V.A., Shaifta, Y., Drndarski, S., Knock, G.A., Aaronson, P.I. and Ward, J.P. 2008. Constriction of Pulmonary Artery by Peroxide: Role of Ca2+ Release and PKC. Free Radical Biology & Medicine. 45 (10), pp. 1468-76. https://doi.org/10.1016/j.freeradbiomed.2008.08.020

Induction of Aquaporin 1 but Not Aquaporin 4 Messenger RNA in Rat Primary Brain Microvessel Endothelial Cells in Culture
Dolman, D.E.M., Drndarski, S., Abbott, N.J. and Rattray, M. 2005. Induction of Aquaporin 1 but Not Aquaporin 4 Messenger RNA in Rat Primary Brain Microvessel Endothelial Cells in Culture. Journal of Neurochemistry. 93 (4), pp. 825-833. https://doi.org/10.1111/j.1471-4159.2005.03111.x

Permalink - https://westminsterresearch.westminster.ac.uk/item/qzqqx/an-improved-in-vitro-blood-brain-barrier-model-rat-brain-endothelial-cells-co-cultured-with-astrocytes


Share this

Usage statistics

90 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.