Induction of Aquaporin 1 but Not Aquaporin 4 Messenger RNA in Rat Primary Brain Microvessel Endothelial Cells in Culture

Dolman, D.E.M., Drndarski, S., Abbott, N.J. and Rattray, M. 2005. Induction of Aquaporin 1 but Not Aquaporin 4 Messenger RNA in Rat Primary Brain Microvessel Endothelial Cells in Culture. Journal of Neurochemistry. 93 (4), pp. 825-833. https://doi.org/10.1111/j.1471-4159.2005.03111.x

TitleInduction of Aquaporin 1 but Not Aquaporin 4 Messenger RNA in Rat Primary Brain Microvessel Endothelial Cells in Culture
TypeJournal article
AuthorsDolman, D.E.M., Drndarski, S., Abbott, N.J. and Rattray, M.
Abstract

Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.

Keywordsaquaporin, blood–brain barrier, multidrug resistance protein, water transport.
JournalJournal of Neurochemistry
Journal citation93 (4), pp. 825-833
ISSN0022-3042
Year2005
PublisherWiley
Digital Object Identifier (DOI)https://doi.org/10.1111/j.1471-4159.2005.03111.x
PubMed ID15857386
Web address (URL)https://onlinelibrary.wiley.com/doi/full/10.1111/j.1471-4159.2005.03111.x
Publication dates
Published22 Apr 2005

Related outputs

Stroke recovery in rats after 24h-delayed intramuscular neurotrophin-3 infusion
Duricki, D.A., Drndarski, S., Bernanos, B., Tobias Wood, T., Bosch, K., Chen, Q., Shine, H.D., Simmons, C., Williams, S.C.R., McMahon, S.B., Begley, D.J., Cash, D. and Moon, L.D.F. 2019. Stroke recovery in rats after 24h-delayed intramuscular neurotrophin-3 infusion. Annals of Neurology. 85 (1), pp. 32-46. https://doi.org/10.1002/ana.25386

The Blood-Brain Barrier in Psychosis
Pollak, T.A., Drndarski, S., Stone, M.J., David, A.S., McGuire, P. and Abbott, N.J. 2018. The Blood-Brain Barrier in Psychosis. The Lancet Psychiatry. 5 (1), pp. 79-92. https://doi.org/10.1016/S2215-0366(17)30293-6

Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses
Kirkegaard, T., Gray, J., Priestman, D.A., Wallom, K.-L., Atkins, J., Olsen, O.D., Klein, A., Drndarski, S., Petersen, N.H.T., Ingemann, L., Smith, D.A., Morris, L., Bornæs, C., Jørgensen, S.H., Williams, I., Hinsby, A., Arenz, C., Begley, D., Jäättelä, M. and Platt, F.M. 2016. Heat shock protein–based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine. 8 (355), p. 355ra188 355ra188. https://doi.org/10.1126/scitranslmed.aad9823

An Improved in Vitro Blood-Brain Barrier Model: Rat Brain Endothelial Cells Co-Cultured With Astrocytes
Abbott, N.J., Dolman, D.E.M., Drndarski, S. and Fredriksson, S.M. 2012. An Improved in Vitro Blood-Brain Barrier Model: Rat Brain Endothelial Cells Co-Cultured With Astrocytes. Methods in Molecular Biology. 814, pp. 415-430. https://doi.org/10.1007/978-1-61779-452-0_28

Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery
Knock, G.A., Shaifta, Y., Snetkov, V.A., Vowles, B., Drndarski, S., Ward, J.P. and Aaronson, P.I. 2008. Interaction between src family kinases and rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery. Cardiovascular Research. 77 (3), pp. 570-9. https://doi.org/10.1093/cvr/cvm073

Role of SRC-Family Kinases in Hypoxic Vasoconstriction of Rat Pulmonary Artery
Knock, G.A., Snetkov, V.A., Shaifta, Y., Drndarski, S., Ward, J.P. and Aaronson, P.I. 2008. Role of SRC-Family Kinases in Hypoxic Vasoconstriction of Rat Pulmonary Artery. Cardiovascular Research. 80 (3), pp. 453-62. https://doi.org/10.1093/cvr/cvn209

Constriction of Pulmonary Artery by Peroxide: Role of Ca2+ Release and PKC
Pourmahram, G.E., Snetkov, V.A., Shaifta, Y., Drndarski, S., Knock, G.A., Aaronson, P.I. and Ward, J.P. 2008. Constriction of Pulmonary Artery by Peroxide: Role of Ca2+ Release and PKC. Free Radical Biology & Medicine. 45 (10), pp. 1468-76. https://doi.org/10.1016/j.freeradbiomed.2008.08.020

Permalink - https://westminsterresearch.westminster.ac.uk/item/qzqv3/induction-of-aquaporin-1-but-not-aquaporin-4-messenger-rna-in-rat-primary-brain-microvessel-endothelial-cells-in-culture


Share this

Usage statistics

56 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.