Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor

Sengupta, D., Sood, M., Vijayvargia, P., Hota, S. and Naik, P.K. 2013. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor. Bioinformation. 9 (11), pp. 555-559. https://doi.org/10.6026/97320630009555

TitleAssociation rule mining based study for identification of clinical parameters akin to occurrence of brain tumor
TypeJournal article
AuthorsSengupta, D., Sood, M., Vijayvargia, P., Hota, S. and Naik, P.K.
Abstract

Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for 550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development.

JournalBioinformation
Journal citation9 (11), pp. 555-559
ISSN0973-2063
Year2013
PublisherBiomedical Informatics
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.6026/97320630009555
PubMed ID23888095
Publication dates
Published29 Jun 2013

Related outputs

Doctors’ and nurses’ eating practices during shift work: Findings from a qualitative study
Sum, K., Cheshire, A., Ridge, Damien T., Sengupta, D. and Deb, D.S. 2024. Doctors’ and nurses’ eating practices during shift work: Findings from a qualitative study. Proceedings of the Nutrition Society. 83 (OCE2), p. E204. https://doi.org/10.1017/s0029665124004282

The Cavendish Living lab - a multidisciplinary, vertically integrated project focused on sustainability
Basnett, P., Percy, L., Sengupta, D. and Smith, C.L. 2023. The Cavendish Living lab - a multidisciplinary, vertically integrated project focused on sustainability. Westminster Learning and Teaching Symposium 2023: Better Than the Real Thing? Exploring Education Futures at the University of Westminster. University of Westminster 04 Sep 2023

Antiviral Drug Target Identification and Ligand Discovery
Patel, Hershna and Sengupta, Dipankar 2023. Antiviral Drug Target Identification and Ligand Discovery. in: Gore, M. and Jagtap, U.B. (ed.) Computational Drug Discovery and Design Springer.

Smart Urban Metabolism: A Big-Data and Machine Learning Perspective
Ruchira Ghosh and Dipankar Sengupta 2023. Smart Urban Metabolism: A Big-Data and Machine Learning Perspective. in: Urban Metabolism and Climate Change Springer. pp. 325–344

Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21
Mortoglou, M., Miralles, F., Mould, R., Sengupta, D. and Uysal Onganer, P. 2023. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. European Journal of Cell Biology. 102 (2) 151318. https://doi.org/10.1016/j.ejcb.2023.151318

Interpretable semisupervised classifier for predicting cancer stages
Grau, I., Sengupta, D. and Nowe, A. 2021. Interpretable semisupervised classifier for predicting cancer stages. in: Kumar, P., Kumar, Y. and Tawhid, M.A. (ed.) Machine Learning, Big Data, and IoT for Medical Informatics Academic Press. pp. 241-259

Artificial Intelligence in Precision Medicine: A Perspective in Biomarker and Drug Discovery
Sengupta, D. and Santoshi, S. 2021. Artificial Intelligence in Precision Medicine: A Perspective in Biomarker and Drug Discovery. in: Saxena, A. and Chandra, S. (ed.) Artificial Intelligence and Machine Learning in Healthcare Springer. pp. 71-88

An ensemble approach for evaluating the cognitive performance of human population at high altitude
Sengupta, D., Sharma, V.K., Hota, S.K., Srivastava, R.B. and Naik, P.K. 2021. An ensemble approach for evaluating the cognitive performance of human population at high altitude. in: Kumar, P., Kumar, Y. and Tawhid, M.A. (ed.) Machine Learning, Big Data, and IoT for Medical Informatics Academic Press. pp. 165-178

Machine learning in precision medicine
Sengupta, D. 2021. Machine learning in precision medicine. in: Kumar, P., Kumar, Y. and Tawhid, M.A. (ed.) Machine Learning, Big Data, and IoT for Medical Informatics Academic Press. pp. 405-419

An interpretable semi-supervised classifier using rough sets for amended self-labeling
Grau, I., Sengupta, D., Garcia Lorenzo, M.M. and Nowe, A. 2020. An interpretable semi-supervised classifier using rough sets for amended self-labeling. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2020). Glasgow, UK 19 - 24 Jul 2020 IEEE . https://doi.org/10.1109/fuzz48607.2020.9177549

Training set edition using Rough Set Theory for Semi-supervised Classification
Grau, I., Nápoles, G., Sengupta, D., García Lorenzo, M.M. and Nowe, A. 2017. Training set edition using Rough Set Theory for Semi-supervised Classification. 2nd International Symposium on Fuzzy and Rough Sets. Villa Clara, Cuba 24 - 26 Oct 2017 Editorial Feijoó.

Genomic Variant Classifier Tool
Grau, I., Sengupta, D., Farid, D.M., Manderick, B., Nowe, A., Garcia Lorenzo, M.M., Daneels, D., Bonduelle, M., Croes, D. and Van Dooren , S. 2016. Genomic Variant Classifier Tool. SAI Intelligent Systems Conference 2016. London 21 Sep 2016 Springer. https://doi.org/10.1007/978-3-319-56994-9_32

GeVaCT - Genomic Variant Classifier Tool
Daneels, D., Grau, I., Sengupta, D., Bonduelle, M.L., Farid, D., Croes, D., Nowé, A. and Van Dooren, S. 2016. GeVaCT - Genomic Variant Classifier Tool. European Journal of Human Genetics. 24 (E-Supplement 1), p. 341.

Grey-Box Model: An ensemble approach for addressing semi-supervised classification problems
Sengupta, D., Grau, I., Garcia Lorenzo, M.M. and Nowe, A. 2016. Grey-Box Model: An ensemble approach for addressing semi-supervised classification problems. Benelearn 2016: Belgian-Dutch Conference on Machine Learning. Katholieke Universiteit Leuven, Campus Kortrijk (KULAK) 12 - 13 Sep 2016

GEVACT: Genomic Variant Classifier Tool
Daneels, D., Grau, I., Sengupta, D., Bonduelle, M., Farid, D.M., Croes, D., Nowé, A. and Van Dooren, S. 2015. GEVACT: Genomic Variant Classifier Tool. BeSHG & NVHG First Joint Meeting “Genetics & Society”. Leuven, Belgium 04 - 05 Feb 2016

CliniPhenome: Clinical and Phenotypic Annotation Database
Sengupta, D., Croes, D., Van Dooren, S., Bonduelle, M. and Nowe, A. 2015. CliniPhenome: Clinical and Phenotypic Annotation Database. BeMGI Annual Meeting 2015. Ghent, Belgium

GeVaCT: Genomic Variant Classifier Tool
Grau, I., Daneels, D., Van Dooren, S., Bonduelle , M., Farid, D.M., Croes, D., Nowé, A. and Sengupta, D. 2015. GeVaCT: Genomic Variant Classifier Tool. 10th Benelux Bioinformatics Conference. University of Antwerp, Belgium 07 - 08 Dec 2015

CliniPhenome: Clinical and Phenotypic Annotation Database
Sengupta, D., Croes, D., Van Dooren, S., Bonduelle, M. and Nowe, A. 2015. CliniPhenome: Clinical and Phenotypic Annotation Database. 2nd International Conference on Health Informatics & Technology. Valencia, Spain 27 - 29 Jul 2015 OMICS Publishing Group.

Benchmarking pre-processing and batch effect removal methods for Insilico DB: Genomics Big Data Infrastructure
De Clerck, Q., Nowe, A., Coletta, A. and Sengupta, D. 2014. Benchmarking pre-processing and batch effect removal methods for Insilico DB: Genomics Big Data Infrastructure. 9th Benelux Bioinformatics Conference (BBC 2014). Novotel-Kirchberg, Luxembourg 08 - 09 Dec 2014

Homology Modeling of Bacteriocins: From sequence alignments to structural models
Atri, P., Sengupta, D., Verma, S., Ali, S. and Dey, G. 2014. Homology Modeling of Bacteriocins: From sequence alignments to structural models. International Journal of Scientific & Engineering Research. 5 (5), pp. 123-126.

Design of dimensional model for clinical data storage and analysis
Sengupta, D., Arora, P., Pant, S. and Naik, P.K. 2013. Design of dimensional model for clinical data storage and analysis. Applied Medical Informatics. 32 (2), pp. 47-53.

SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury
Sengupta, D. and Naik, P.K. 2013. SN algorithm: analysis of temporal clinical data for mining periodic patterns and impending augury. Journal of Clinical Bioinformatics. 3 24. https://doi.org/10.1186/2043-9113-3-24

TpPred: A Tool for Hierarchical Prediction of Transport Proteins Using Cluster of Neural Networks and Sequence Derived Features
Jain, S., Ranjan, P., Sengupta, D. and Naik, P.K. 2012. TpPred: A Tool for Hierarchical Prediction of Transport Proteins Using Cluster of Neural Networks and Sequence Derived Features. International Journal for Computational Biology. 1 (1), pp. 28-36.

Mode of interaction of calcium oxalate crystal with human phosphate cytidylyltransferase 1: a novel inhibitor purified from human renal stone matrix
Pathak, P., Naik, P.K., Sengupta, D., Singh, S.K. and Tandon, C. 2011. Mode of interaction of calcium oxalate crystal with human phosphate cytidylyltransferase 1: a novel inhibitor purified from human renal stone matrix. Journal of Biomedical Science and Engineering. 4 (9), pp. 591-598. https://doi.org/10.4236/jbise.2011.49075

Docking-MM-GB/SA and ADME screening of HIV-1 NNRTI inhibitor: Nevirapine and its analogues
Sengupta, D., Verma, D. and Naik, P.K. 2008. Docking-MM-GB/SA and ADME screening of HIV-1 NNRTI inhibitor: Nevirapine and its analogues. In Silico Biology. 8 (3-4), pp. 275-289.

Binding Modes, binding Affinities and ADME Screening of HIV-1 NNRTI Inhibitor: Efavirnez and its analogues.
Sengupta, D. 2007. Binding Modes, binding Affinities and ADME Screening of HIV-1 NNRTI Inhibitor: Efavirnez and its analogues. Online Journal of Bioinformatics. 8 (1), pp. 99-114.

In-silico TAT-PTD prediction for cell penetrating peptides
Tandon, C., Aggarwal, A., Goel, P., Sengupta, D. and Naik, P.K. 2007. In-silico TAT-PTD prediction for cell penetrating peptides. Online Journal of Bioinformatics. 8 (1), pp. 115-138.

Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: Screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties
Sengupta, D., Verma, D. and Naik, P.K. 2007. Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: Screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties. Journal of Biosciences. 32 (3), pp. 1307-1316. https://doi.org/10.1007/s12038-007-0140-y

Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties
Sengupta, D., Verma, D. and Naik, P.K. 2007. Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties. Journal of Biosciences. 32, pp. 1307-1316. https://doi.org/10.1007/s12038-007-0124-y

Clustering of HIV-I Subtype: Study of Molecular Diversity using Phylogenetic Analysis
Sengupta, D., Verma, D., Mishra, V.S. and Naik, P.K. 2006. Clustering of HIV-I Subtype: Study of Molecular Diversity using Phylogenetic Analysis. Bioinformatics Trends: A Journal of Bioinformatics and its Applications. 1 (1), pp. 1-12.

Permalink - https://westminsterresearch.westminster.ac.uk/item/vw227/association-rule-mining-based-study-for-identification-of-clinical-parameters-akin-to-occurrence-of-brain-tumor


Share this

Usage statistics

67 total views
31 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.