Taxonomy of Autonomic Cloud Computing

Hamzeh, H., Meacham, S., Virginas, B. and Phalp, K. 2018. Taxonomy of Autonomic Cloud Computing. International Journal of Computer and Communication Engineering. 7 (3), pp. 68-84. https://doi.org/10.17706/ijcce.2018.7.3.68-84

TitleTaxonomy of Autonomic Cloud Computing
TypeJournal article
AuthorsHamzeh, H., Meacham, S., Virginas, B. and Phalp, K.
Abstract

Cloud computing is a paradigm that has become popular in recent decade. The flexibility, scalability, elasticity, inexpensive and unlimited use of resources have made the cloud an efficient and valuable infrastructure for many organizations to perform their computational operations. Specifically, the elasticity feature of cloud computing leads to the increase of complexity of this technology . Considering the emergence of new technologies and user demands, the existing solutions are not suitable to satisfy the huge volume of data and user requirements. Moreover, certain quality requirements that have to be met for efficient resource provisioning such as Quality of Service (QoS) is an obstacle to scalability. Hence, autonomic computing has emerged as a highly dynamic solution for complex administration issues that goes beyond simple automation to self-learning and highly-adaptable systems. Therefore, the combination of cloud computing and autonomics known as Autonomic Cloud Computing (ACC) seems a natural progression for both areas. This paper is an overview of the latest conducted research in ACC and the corresponding software engineering techniques. Additionally, existing autonomic applications, methods and their use cases in cloud computing environment are also investigated.

JournalInternational Journal of Computer and Communication Engineering
Journal citation7 (3), pp. 68-84
ISSN2010-3743
Year2018
PublisherInternational Academy Publishing
Digital Object Identifier (DOI)https://doi.org/10.17706/ijcce.2018.7.3.68-84
Web address (URL)http://dx.doi.org/10.17706/ijcce.2018.7.3.68-84
Publication dates
PublishedJul 2018

Related outputs

Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions
Ullah, A., Kiss, T., Kovacs, J., Tusa, F., Deslauriers, J., Dagdeviren, H., Arjun, R. and Hamzeh, H. 2023. Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions. Journal of Cloud Computing: Advances, Systems and Applications. 12 (135). https://doi.org/10.1186/s13677-023-00516-5

Interoperable Data Analytics Reference Architectures Empowering Digital-Twin-Aided Manufacturing
Marosi, A.C., Márk Emodi, Hajnal, A., Lovas, R., Kiss, T., Valerie Poser, Antony, J., Bergweiler, S., Hamzeh, H., Deslauriers, J. and Kovacs, J. 2022. Interoperable Data Analytics Reference Architectures Empowering Digital-Twin-Aided Manufacturing. Future Internet. 14 (4) e114. https://doi.org/10.3390/fi14040114

H-FFMRA: A Multi Resource Fully Fair Resources Allocation Algorithm in Heterogeneous Cloud Computing
Hamzeh, H., Meacham, S., Khan, K., Stefanidis, A. and Phalp, K. 2021. H-FFMRA: A Multi Resource Fully Fair Resources Allocation Algorithm in Heterogeneous Cloud Computing. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). Madrid, Spain 12 - 16 Jul 2021 IEEE . https://doi.org/10.1109/compsac51774.2021.00172

MRFS: A Multi-resource Fair Scheduling Algorithm in Heterogeneous Cloud Computing
Hamzeh, H., Meacham, S., Khan, K., Phalp, K. and Stefanidis, A. 2020. MRFS: A Multi-resource Fair Scheduling Algorithm in Heterogeneous Cloud Computing. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). Madrid, Spain 13 - 20 Jul 2020 IEEE . https://doi.org/10.1109/compsac48688.2020.00-18

FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud Environments
Hamzeh, H., Meacham, S., Khan, K., Phalp, K. and Stefanidis, A. 2019. FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud Environments. 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Leicester, United Kingdom 19 - 23 Aug 2019 IEEE . https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00091

A New Approach to Calculate Resource Limits with Fairness in Kubernetes
Hamzeh, H., Meacham, S. and Khan, K. 2019. A New Approach to Calculate Resource Limits with Fairness in Kubernetes. 2019 First International Conference on Digital Data Processing (DDP). London, United Kingdom 15 - 17 Nov 2019 IEEE . https://doi.org/10.1109/ddp.2019.00020

MLF-DRS: A Multi-level Fair Resource Allocation Algorithm in Heterogeneous Cloud Computing Systems
Hamzeh, H., Meacham, S., Virginas, B., Khan, K. and Phalp, K. 2019. MLF-DRS: A Multi-level Fair Resource Allocation Algorithm in Heterogeneous Cloud Computing Systems. 4th International Conference on Computer and Communication Systems (ICCCS). Singapore 23 - 25 Feb 2019 IEEE . https://doi.org/10.1109/ccoms.2019.8821774

An adaptive E-commerce application using web framework technology and machine learning
Hamzeh, H. 2018. An adaptive E-commerce application using web framework technology and machine learning. BCS SQM/Inspire 2018. London, United Kingdom 26 Mar 2018

Bandwidth Allocation with Fairness in Multipath Networks
Hamzeh, H., Hemmati, M. and Shirmohammadi, S. 2017. Bandwidth Allocation with Fairness in Multipath Networks. International Journal of Computer and Communication Engineering. 6 (3), pp. 151-160. https://doi.org/10.17706/IJCCE.2017.6.3.151-160

Priced-Based Fair Bandwidth Allocation for Networked Multimedia
Hamzeh, H., Hemmati, M. and Shirmohammadi, S. 2017. Priced-Based Fair Bandwidth Allocation for Networked Multimedia. 2017 IEEE International Symposium on Multimedia (ISM). Taichung, Taiwan 11 - 13 Dec 2017 IEEE . https://doi.org/10.1109/ism.2017.14

Permalink - https://westminsterresearch.westminster.ac.uk/item/vxw98/taxonomy-of-autonomic-cloud-computing


Share this

Usage statistics

95 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.