Bandwidth Allocation with Fairness in Multipath Networks

Hamzeh, H., Hemmati, M. and Shirmohammadi, S. 2017. Bandwidth Allocation with Fairness in Multipath Networks. International Journal of Computer and Communication Engineering. 6 (3), pp. 151-160. https://doi.org/10.17706/IJCCE.2017.6.3.151-160

TitleBandwidth Allocation with Fairness in Multipath Networks
TypeJournal article
AuthorsHamzeh, H., Hemmati, M. and Shirmohammadi, S.
Abstract

Network resource management and traffic engineering are important subjects in today’s Internet. In terms of traffic engineering, bandwidth allocation and splitting it in a fair manner among different users have become challenging. In addition, optimizing the utilization of network resources, increasing the user utility and throughput are also considerable. So, the user satisfaction with regard to the resource allocation and Quality of Service (QoS) are the most important factors that should be taken into the consideration. At the first step, Network Utility Maximization (NUM) problem has been considered as an initial stage to design any traffic engineering method. In this paper and by considering the mentioned issues, first of all we take into account the NUM problem and optimization decomposition methods by focusing on Traffic Management Using Multipath Protocol (TRUMP), and its weaknesses to tackle the fair resource allocation problem associated with it. We then propose a model to tackle the fair bandwidth allocation issue by implementing an optimized sending rate adaptation model using an intuitive investment method to optimize the link prices (delay and loss) to achieve an efficient fair bandwidth allocation model. The model is evaluated by using different simulations and different topologies under various network conditions. Our results show that the proposed model behaves fairer than TRUMP in certain path selections. As an average from the results and at a minimum point our model achieves 26% improvement in fairness in contrast to TRUMP. In addition, for large networks we can enjoy approximately 90% improvement in fairness measure.

JournalInternational Journal of Computer and Communication Engineering
Journal citation6 (3), pp. 151-160
ISSN2010-3743
Year2017
PublisherInternational Academy Publishing
Digital Object Identifier (DOI)https://doi.org/10.17706/IJCCE.2017.6.3.151-160
Publication dates
Published30 Jun 2017

Related outputs

Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions
Ullah, A., Kiss, T., Kovacs, J., Tusa, F., Deslauriers, J., Dagdeviren, H., Arjun, R. and Hamzeh, H. 2023. Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions. Journal of Cloud Computing: Advances, Systems and Applications. 12 (135). https://doi.org/10.1186/s13677-023-00516-5

Interoperable Data Analytics Reference Architectures Empowering Digital-Twin-Aided Manufacturing
Marosi, A.C., Márk Emodi, Hajnal, A., Lovas, R., Kiss, T., Valerie Poser, Antony, J., Bergweiler, S., Hamzeh, H., Deslauriers, J. and Kovacs, J. 2022. Interoperable Data Analytics Reference Architectures Empowering Digital-Twin-Aided Manufacturing. Future Internet. 14 (4) e114. https://doi.org/10.3390/fi14040114

H-FFMRA: A Multi Resource Fully Fair Resources Allocation Algorithm in Heterogeneous Cloud Computing
Hamzeh, H., Meacham, S., Khan, K., Stefanidis, A. and Phalp, K. 2021. H-FFMRA: A Multi Resource Fully Fair Resources Allocation Algorithm in Heterogeneous Cloud Computing. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). Madrid, Spain 12 - 16 Jul 2021 IEEE . https://doi.org/10.1109/compsac51774.2021.00172

MRFS: A Multi-resource Fair Scheduling Algorithm in Heterogeneous Cloud Computing
Hamzeh, H., Meacham, S., Khan, K., Phalp, K. and Stefanidis, A. 2020. MRFS: A Multi-resource Fair Scheduling Algorithm in Heterogeneous Cloud Computing. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). Madrid, Spain 13 - 20 Jul 2020 IEEE . https://doi.org/10.1109/compsac48688.2020.00-18

FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud Environments
Hamzeh, H., Meacham, S., Khan, K., Phalp, K. and Stefanidis, A. 2019. FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud Environments. 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Leicester, United Kingdom 19 - 23 Aug 2019 IEEE . https://doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00091

A New Approach to Calculate Resource Limits with Fairness in Kubernetes
Hamzeh, H., Meacham, S. and Khan, K. 2019. A New Approach to Calculate Resource Limits with Fairness in Kubernetes. 2019 First International Conference on Digital Data Processing (DDP). London, United Kingdom 15 - 17 Nov 2019 IEEE . https://doi.org/10.1109/ddp.2019.00020

MLF-DRS: A Multi-level Fair Resource Allocation Algorithm in Heterogeneous Cloud Computing Systems
Hamzeh, H., Meacham, S., Virginas, B., Khan, K. and Phalp, K. 2019. MLF-DRS: A Multi-level Fair Resource Allocation Algorithm in Heterogeneous Cloud Computing Systems. 4th International Conference on Computer and Communication Systems (ICCCS). Singapore 23 - 25 Feb 2019 IEEE . https://doi.org/10.1109/ccoms.2019.8821774

An adaptive E-commerce application using web framework technology and machine learning
Hamzeh, H. 2018. An adaptive E-commerce application using web framework technology and machine learning. BCS SQM/Inspire 2018. London, United Kingdom 26 Mar 2018

Taxonomy of Autonomic Cloud Computing
Hamzeh, H., Meacham, S., Virginas, B. and Phalp, K. 2018. Taxonomy of Autonomic Cloud Computing. International Journal of Computer and Communication Engineering. 7 (3), pp. 68-84. https://doi.org/10.17706/ijcce.2018.7.3.68-84

Priced-Based Fair Bandwidth Allocation for Networked Multimedia
Hamzeh, H., Hemmati, M. and Shirmohammadi, S. 2017. Priced-Based Fair Bandwidth Allocation for Networked Multimedia. 2017 IEEE International Symposium on Multimedia (ISM). Taichung, Taiwan 11 - 13 Dec 2017 IEEE . https://doi.org/10.1109/ism.2017.14

Permalink - https://westminsterresearch.westminster.ac.uk/item/vxw9v/bandwidth-allocation-with-fairness-in-multipath-networks


Share this

Usage statistics

91 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.