Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs)

Hoffmann, R.M., Mele, S., Cheung, A., Larcombe-Young, D., Bucaite, G., Sachouli, E., Zlatareva, I., Morad, H., Marlow, R., McDonnell, J.M., Figini, M., Lacy, K.E., Tutt, A.J.N., Spicer, J.F., Thurston, D.E., Karagiannis, S.N. and Crescioli, S. 2020. Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs). Scientific Reports. 10 (1), pp. 1-11. https://doi.org/10.1038/s41598-020-65860-x

TitleRapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs)
TypeJournal article
AuthorsHoffmann, R.M., Mele, S., Cheung, A., Larcombe-Young, D., Bucaite, G., Sachouli, E., Zlatareva, I., Morad, H., Marlow, R., McDonnell, J.M., Figini, M., Lacy, K.E., Tutt, A.J.N., Spicer, J.F., Thurston, D.E., Karagiannis, S.N. and Crescioli, S.
Abstract

Antibody-Drug Conjugates (ADCs) developed as a targeted treatment approach to deliver toxins directly to cancer cells are one of the fastest growing classes of oncology therapeutics, with eight ADCs and two immunotoxins approved for clinical use. However, selection of an optimum target and payload combination, to achieve maximal therapeutic efficacy without excessive toxicity, presents a significant challenge. We have developed a platform to facilitate rapid and cost-effective screening of antibody and toxin combinations for activity and safety, based on streptavidin-biotin conjugation. For antibody selection, we evaluated internalization by target cells using streptavidin-linked antibodies conjugated to biotinylated saporin, a toxin unable to cross cell membranes. For payload selection, we biotinylated toxins and conjugated them to antibodies linked to streptavidin to evaluate antitumour activity and pre-clinical safety. As proof of principle, we compared trastuzumab conjugated to emtansine via streptavidin-biotin (Trastuzumab-SB-DM1) to the clinically approved trastuzumab emtansine (T-DM1). We showed comparable potency in reduction of breast cancer cell survival in vitro and in growth restriction of orthotopic breast cancer xenografts in vivo. Our findings indicate efficient generation of functionally active ADCs. This approach can facilitate the study of antibody and payload combinations for selection of promising candidates for future ADC development.

JournalScientific Reports
Journal citation10 (1), pp. 1-11
Year2020
PublisherNature Publishing Group
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-020-65860-x
PubMed ID32483228
Web address (URL)https://www.nature.com/articles/s41598-020-65860-x#citeas
Publication dates
PublishedJun 2020

Related outputs

In sepsis hydrogen peroxide release accompanies neutrophil chemotaxis to organs, artesunate prevents this neutrophil-mediated organ infiltration, cytokine storm and NET release
Morad, H. 2024. In sepsis hydrogen peroxide release accompanies neutrophil chemotaxis to organs, artesunate prevents this neutrophil-mediated organ infiltration, cytokine storm and NET release. International Conference on Vaccines and Immunology . Paris, France 17 - 18 Oct 2024 Scientific Collegium.

Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
Morad, H.O.J., Luqman, S., Garcia Pinto, L., Cunningham, K., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 2022 (12) 11078. https://doi.org/10.1038/s41598-022-15214-6

Repurposing the antimalarial compound artemisinin as a novel therapy for inflammatory conditions
Morad, H. 2022. Repurposing the antimalarial compound artemisinin as a novel therapy for inflammatory conditions. Drug Repurposing II. Woburn House, London, UK 10 - 11 May 2022 The Biochemical Society.

Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
Morad, H.O.J., Luqman, S., Pinto, L.G., Cunningham, K.P., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 12 (1), pp. 1-18. https://doi.org/10.1038/s41598-022-15214-6

TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide
Hassan Morad, Suaib Luqman, Chun-Hsiang Tan and Peter McNaughton 2021. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Dynamic Cell IV. 14 - 19 Mar 2021 The Biochemical Society.

TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide
Morad, H. 2021. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Scientific Reports. 11 (1), pp. 1-16. https://doi.org/10.1038/s41598-021-88224-5

O30 Natural compounds affecting neutrophil migration
Hassan Morad, Suaib Luqman and Peter McNaughton 2017. O30 Natural compounds affecting neutrophil migration. ICMAN/ IUPHAR Natural Products. Aberdeen, Scotland 27 - 29 Sep 2017 Biochemical Pharmacology. https://doi.org/10.1016/j.bcp.2017.06.095

O30 Natural compounds affecting neutrophil migration
Morad, H., Luqman, S. and McNaughton, P. 2017. O30 Natural compounds affecting neutrophil migration. Biochemical Pharmacology. 139 (1), p. 119. https://doi.org/10.1016/j.bcp.2017.06.095

Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro
Morad, H. 2014. Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro. Royal Society of Medicine, Clinical Immunology and Allergy Conference. University of Cambridge Sep - Oct 2014 Royal Society of Medicine.

Permalink - https://westminsterresearch.westminster.ac.uk/item/w0xwv/rapid-conjugation-of-antibodies-to-toxins-to-select-candidates-for-the-development-of-anticancer-antibody-drug-conjugates-adcs


Share this

Usage statistics

43 total views
27 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.