Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release

Morad, H.O.J., Luqman, S., Garcia Pinto, L., Cunningham, K., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 2022 (12) 11078. https://doi.org/10.1038/s41598-022-15214-6

TitleArtemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
TypeJournal article
AuthorsMorad, H.O.J., Luqman, S., Garcia Pinto, L., Cunningham, K., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A.
Abstract

Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death.

KeywordsBiophysics
Cell biology
Immunology
Medical research
Drug discovery
Article number11078
JournalScientific Reports
Journal citation2022 (12)
ISSN2045-2322
Year2022
PublisherNature Publishing Group
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1038/s41598-022-15214-6
PubMed ID35773325
Web address (URL)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245885/
Publication dates
Published30 Jun 2022
Supplemental file
File Access Level
Open (open metadata and files)

Related outputs

Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants
Elizabeth D. Kim, Xiaoan Wu, Sangyun Lee, Gareth R. Tibbs, Kevin P. Cunningham, Eleonora Di Zanni, Marta E. Perez, Peter A. Goldstein, Alessio Accardi, H. Peter Larsson and Crina M. Nimigean 2024. Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants. Nature. 632, pp. 451-459. https://doi.org/10.1038/s41586-024-07743-z

Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism
Wu, X, Cunningham, K.P., Bruening-Wright, A, Pandey, S and Larsson, H. P. 2024. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. International Journal of Molecular Sciences. 25 (8) 4309. https://doi.org/10.3390/ijms25084309

Preprint: Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism
Xiaoan Wu, Kevin P. Cunningham, Andrew Bruening-Wright, Shilpi Pandey and H. Peter Larsson 2024. Preprint: Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. Preprints.org. https://doi.org/10.20944/preprints202403.0499.v1

Preprint: Binding of PUFA stabilizes a conductive state of the selectivity filter in IKs channels
Alessia Golluscio, Jodene Eldstrom, Jessica J. Jowais, Marta E. Perez-Rodriguez, Kevin P. Cunningham, Alicia de la Cruz, Xiaoan Wu, David Fedida and H. Peter Larsson 2024. Preprint: Binding of PUFA stabilizes a conductive state of the selectivity filter in IKs channels. arXiv. https://doi.org/10.1101/2024.01.11.575247

Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation
Xiaoan Wu, Kevin P. Cunningham, Rosamary Ramentol, Marta E. Perez and H. Peter Larsson 2023. Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation. Journal of General Physiology. 155 (5) e202213170. https://doi.org/10.1085/jgp.202213170

Repurposing the antimalarial compound artemisinin as a novel therapy for inflammatory conditions
Morad, H. 2022. Repurposing the antimalarial compound artemisinin as a novel therapy for inflammatory conditions. Drug Repurposing II. Woburn House, London, UK 10 - 11 May 2022 The Biochemical Society.

Preprint: Artemisinin inhibits innate immune cell chemotaxis, cytokine production and NET release
Morad, H., Luqman, S., Pinto, L., Cunningham, K.P., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Preprint: Artemisinin inhibits innate immune cell chemotaxis, cytokine production and NET release. https://doi.org/10.21203/rs.3.rs-1335980/v1

Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
Morad, H.O.J., Luqman, S., Pinto, L.G., Cunningham, K.P., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 12 (1), pp. 1-18. https://doi.org/10.1038/s41598-022-15214-6

TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide
Hassan Morad, Suaib Luqman, Chun-Hsiang Tan and Peter McNaughton 2021. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Dynamic Cell IV. 14 - 19 Mar 2021 The Biochemical Society.

The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels
Cunningham, K., Clapp. L.H., Mathie, A. and Veale, E.L. 2021. The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Frontiers in Pharmacology. 12 705421. https://doi.org/10.3389/fphar.2021.705421

Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond.
Mathie, A., Veale, E.L., Cunningham, K.P., Holden, R.G. and Wright, P.D. 2021. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annual Review of Pharmacology and Toxicology. 61, pp. 401-420. https://doi.org/10.1146/annurev-pharmtox-030920-111536

Effects of the ventilatory stimulant, doxapram on human TASK‐3 (KCNK9, K2P9.1) channels and TASK‐1 (KCNK3, K2P3.1) channels
Kevin P. Cunningham, D. Euan MacIntyre, Alistair Mathie and Emma L. Veale 2020. Effects of the ventilatory stimulant, doxapram on human TASK‐3 (KCNK9, K2P9.1) channels and TASK‐1 (KCNK3, K2P3.1) channels. Acta Physiologica. 228 (2) e13361. https://doi.org/10.1111/apha.13361

Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs)
Hoffmann, R.M., Mele, S., Cheung, A., Larcombe-Young, D., Bucaite, G., Sachouli, E., Zlatareva, I., Morad, H., Marlow, R., McDonnell, J.M., Figini, M., Lacy, K.E., Tutt, A.J.N., Spicer, J.F., Thurston, D.E., Karagiannis, S.N. and Crescioli, S. 2020. Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs). Scientific Reports. 10 (1), pp. 1-11. https://doi.org/10.1038/s41598-020-65860-x

Characterization and regulation of wild‐type and mutant TASK‐1 two pore domain potassium channels indicated in pulmonary arterial hypertension
Cunningham, K.P., Holden, R.G., Escribano‐Subias, P.M., Cogolludo, A., Veale, E.L. and Mathie, A. 2019. Characterization and regulation of wild‐type and mutant TASK‐1 two pore domain potassium channels indicated in pulmonary arterial hypertension. Journal of Physiology. 597 (4), pp. 1087-1101. https://doi.org/10.1113/jp277275

O30 Natural compounds affecting neutrophil migration
Hassan Morad, Suaib Luqman and Peter McNaughton 2017. O30 Natural compounds affecting neutrophil migration. ICMAN/ IUPHAR Natural Products. Aberdeen, Scotland 27 - 29 Sep 2017 Biochemical Pharmacology. https://doi.org/10.1016/j.bcp.2017.06.095

O30 Natural compounds affecting neutrophil migration
Morad, H., Luqman, S. and McNaughton, P. 2017. O30 Natural compounds affecting neutrophil migration. Biochemical Pharmacology. 139 (1), p. 119. https://doi.org/10.1016/j.bcp.2017.06.095

Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro
Morad, H. 2014. Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro. Royal Society of Medicine, Clinical Immunology and Allergy Conference. University of Cambridge Sep - Oct 2014 Royal Society of Medicine.

Permalink - https://westminsterresearch.westminster.ac.uk/item/wv781/artemisinin-inhibits-neutrophil-and-macrophage-chemotaxis-cytokine-production-and-net-release


Share this

Usage statistics

5 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.