Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants

Elizabeth D. Kim, Xiaoan Wu, Sangyun Lee, Gareth R. Tibbs, Kevin P. Cunningham, Eleonora Di Zanni, Marta E. Perez, Peter A. Goldstein, Alessio Accardi, H. Peter Larsson and Crina M. Nimigean 2024. Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants. Nature. 632, pp. 451-459. https://doi.org/10.1038/s41586-024-07743-z

TitlePropofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants
TypeJournal article
AuthorsElizabeth D. Kim, Xiaoan Wu, Sangyun Lee, Gareth R. Tibbs, Kevin P. Cunningham, Eleonora Di Zanni, Marta E. Perez, Peter A. Goldstein, Alessio Accardi, H. Peter Larsson and Crina M. Nimigean
Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine–phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.

JournalNature
Journal citation632, pp. 451-459
ISSN1476-4687
Year2024
PublisherNature Publishing Group
Digital Object Identifier (DOI)https://doi.org/10.1038/s41586-024-07743-z
PubMed ID39085604
Web address (URL)https://doi.org/10.1038/s41586-024-07743-z
Publication dates
Published31 Jul 2024
Supplemental file

Related outputs

Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism
Wu, X, Cunningham, K.P., Bruening-Wright, A, Pandey, S and Larsson, H. P. 2024. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. International Journal of Molecular Sciences. 25 (8) 4309. https://doi.org/10.3390/ijms25084309

Preprint: Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism
Xiaoan Wu, Kevin P. Cunningham, Andrew Bruening-Wright, Shilpi Pandey and H. Peter Larsson 2024. Preprint: Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. Preprints.org. https://doi.org/10.20944/preprints202403.0499.v1

Preprint: Binding of PUFA stabilizes a conductive state of the selectivity filter in IKs channels
Alessia Golluscio, Jodene Eldstrom, Jessica J. Jowais, Marta E. Perez-Rodriguez, Kevin P. Cunningham, Alicia de la Cruz, Xiaoan Wu, David Fedida and H. Peter Larsson 2024. Preprint: Binding of PUFA stabilizes a conductive state of the selectivity filter in IKs channels. arXiv. https://doi.org/10.1101/2024.01.11.575247

Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation
Xiaoan Wu, Kevin P. Cunningham, Rosamary Ramentol, Marta E. Perez and H. Peter Larsson 2023. Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation. Journal of General Physiology. 155 (5) e202213170. https://doi.org/10.1085/jgp.202213170

Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
Morad, H.O.J., Luqman, S., Garcia Pinto, L., Cunningham, K., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 2022 (12) 11078. https://doi.org/10.1038/s41598-022-15214-6

Preprint: Artemisinin inhibits innate immune cell chemotaxis, cytokine production and NET release
Morad, H., Luqman, S., Pinto, L., Cunningham, K.P., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Preprint: Artemisinin inhibits innate immune cell chemotaxis, cytokine production and NET release. https://doi.org/10.21203/rs.3.rs-1335980/v1

The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels
Cunningham, K., Clapp. L.H., Mathie, A. and Veale, E.L. 2021. The Prostacyclin Analogue, Treprostinil, Used in the Treatment of Pulmonary Arterial Hypertension, is a Potent Antagonist of TREK-1 and TREK-2 Potassium Channels. Frontiers in Pharmacology. 12 705421. https://doi.org/10.3389/fphar.2021.705421

Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond.
Mathie, A., Veale, E.L., Cunningham, K.P., Holden, R.G. and Wright, P.D. 2021. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annual Review of Pharmacology and Toxicology. 61, pp. 401-420. https://doi.org/10.1146/annurev-pharmtox-030920-111536

Effects of the ventilatory stimulant, doxapram on human TASK‐3 (KCNK9, K2P9.1) channels and TASK‐1 (KCNK3, K2P3.1) channels
Kevin P. Cunningham, D. Euan MacIntyre, Alistair Mathie and Emma L. Veale 2020. Effects of the ventilatory stimulant, doxapram on human TASK‐3 (KCNK9, K2P9.1) channels and TASK‐1 (KCNK3, K2P3.1) channels. Acta Physiologica. 228 (2) e13361. https://doi.org/10.1111/apha.13361

Characterization and regulation of wild‐type and mutant TASK‐1 two pore domain potassium channels indicated in pulmonary arterial hypertension
Cunningham, K.P., Holden, R.G., Escribano‐Subias, P.M., Cogolludo, A., Veale, E.L. and Mathie, A. 2019. Characterization and regulation of wild‐type and mutant TASK‐1 two pore domain potassium channels indicated in pulmonary arterial hypertension. Journal of Physiology. 597 (4), pp. 1087-1101. https://doi.org/10.1113/jp277275

Permalink - https://westminsterresearch.westminster.ac.uk/item/wv646/propofol-rescues-voltage-dependent-gating-of-hcn1-channel-epilepsy-mutants


Restricted files

Accepted author manuscript

Under embargo until 31 Jan 2025

Share this

Usage statistics

21 total views
17 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.