The Adenylate-Uridylate-Rich element RNA binding protein ZFP36L1 suppresses replication stress-induced genomic instability

Sidali, A. 2023. The Adenylate-Uridylate-Rich element RNA binding protein ZFP36L1 suppresses replication stress-induced genomic instability. PhD thesis University of Westminster School of Life Sciences https://doi.org/10.34737/w2165

TitleThe Adenylate-Uridylate-Rich element RNA binding protein ZFP36L1 suppresses replication stress-induced genomic instability
TypePhD thesis
AuthorsSidali, A.
Abstract

The RNA binding protein (RBP) ZFP36L1, which binds to adenylate/uridylate (AU)-rich elements (AREs) (AU-RBP) in the 3’ untranslated region of many messenger RNAs, has been extensively characterised for its role in post-transcriptional control of gene expression and is reported as a newly identified cancer driver gene. Replication stress (RS) threatens DNA replication fidelity and stability of the genome. Recently, a small number of AU-RBPs have emerged as key figures in the maintenance of genome integrity through mechanisms that govern the replication stress response and DNA repair. Herein, we report that treatment with low doses of aphidicolin results in hallmarks of RS-associated genomic instability in a cellular model depleted of ZFP36L1 using CRISPR/Cas9. We find that loss of ZFP36L1 results in defects in mitosis leading to chromosome segregation errors and genomic instability. Remarkably, we also identify loss of ZFP36L1 increases the prevalence of FANCD2-associated anaphase ultra-fine bridges indicating chromatid non-disjunction at intrinsically labile common fragile site loci. Furthermore, we detected an increase in RPA and γH2AX foci in S/G2 cells indicative of replication stress-induced DNA damage potentially indicating chronic replication fork stalling and double-strand break formation as demonstrated by increased γH2AX foci colocalising with 53BP1. Surprisingly, chromatin enrichment of U-2OS, HCT116 and Hela cells demonstrated that ZFP36L1 is physically bound to chromatin fractions. Here we also demonstrated the specificity of CRISPR-Cas9 mediated ablation of ZFP36L1 through the inducible expression of ZFP36L1 that demonstrated suppression of 53BP1 nuclear bodies (NBs) and micronuclei formation. Importantly, we demonstrate, by overexpression of a catalytically inactive mutant of human RNase H1 tagged with GFP that loss of ZFP36L1 induces R-loop formation. We also implicate unscheduled R-loop formation as a potential cause for replication stress associated genomic instability through the expression of wild-type RNase H1 which was able to limit the occurrence of 53BP1 NBs in G1 phase cells and RPA in S/G2 phase cells. Finally, we highlight potential ZFP36L1 interactions through mass spectrometry that uncover proteins involved in the maintenance of genome integrity and R-loop resolution. Taken together, our work highlights an important, yet previously unidentified role, for ZFP36L1 in preserving genomic stability including limiting the formation of R-loops in response to replication stress.

Year2023
File
File Access Level
Open (open metadata and files)
ProjectThe Adenylate-Uridylate-Rich element RNA binding protein ZFP36L1 suppresses replication stress-induced genomic instability
PublisherUniversity of Westminster
Publication dates
Published09 Mar 2023
Digital Object Identifier (DOI)https://doi.org/10.34737/w2165

Related outputs

A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation
Anand Panchbhai, Munuse Ceyda Ishanzadeh, Smarana Pankanti, Ahmed Sidali, Nadeeen Solaiman, Radhakrishnan Kanagaraj, John J. Murphy and Kalpana Surendranath 2023. A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation. Computer Methods and Programs in Biomedicine. 232 107447. https://doi.org/10.1016/j.cmpb.2023.107447

AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity.
Sidali, A., Teotia, Varsha, Solaiman, Nadeen Shaikh, Bashir, Nahida, Kanagaraj, Radhakrishnan, Murphy, J. and Surendranath, K. 2021. AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. International Journal of Molecular Sciences. 23 (1) 96. https://doi.org/10.3390/ijms23010096

Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells
Anbu, Sellamuthu, Paul, Anup, Surendranath, Kalpana, Sidali, Ahmed and Pombeiro, Armando J.L. 2021. Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells. Journal of Inorganic Biochemistry. 220 111466. https://doi.org/10.1016/j.jinorgbio.2021.111466

Permalink - https://westminsterresearch.westminster.ac.uk/item/w2165/the-adenylate-uridylate-rich-element-rna-binding-protein-zfp36l1-suppresses-replication-stress-induced-genomic-instability


Share this

Usage statistics

164 total views
245 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.