Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells

Anbu, Sellamuthu, Paul, Anup, Surendranath, Kalpana, Sidali, Ahmed and Pombeiro, Armando J.L. 2021. Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells. Journal of Inorganic Biochemistry. 220 111466. https://doi.org/10.1016/j.jinorgbio.2021.111466

TitleNaphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells
TypeJournal article
AuthorsAnbu, Sellamuthu, Paul, Anup, Surendranath, Kalpana, Sidali, Ahmed and Pombeiro, Armando J.L.
AbstractIn recent years, fluorescent sensors have emerged as attractive imaging probes due to their distinct responses toward bio-relevant metal ions. However, the bioimaging application main barrier is the ‘turn-off’ response toward paramagnetic metal ions such as Cu2+ under physiological conditions. Herein, we report a new sensor (2-methyl(4-bromo-N-ethylpiperazinyl-1,8-naphthalimido)-4-(1H-phenanthro[9,10-d]imidazole-2-yl) phenol) NPP with multifunctional (Naphthalimide, Piperazine, Phenanthroimidazole) units for fluorescent and colourimetric detection of Cu2+ in an aqueous medium. Both absorption and fluorescence spectral titration strategies were used to monitor the Cu2+-sensing property of NPP. The NPP displays a weak emission at ca. 455 nm, which remarkably enhances (⁓3.2-fold) upon selective binding of Cu2+ over a range of metal ions, including other paramagnetic metal ions (Mn2+, Fe3+, Co2+). The stoichiometry, binding constant (Ka) and the LOD (limit of detection) of NPP toward Cu2+ ions were found to be 1:1, 5.0 (± 0.2) × 104 M−1 and 6.5 (± 0.4) × 10−7 M, respectively. We have also used NPP as a fluorescent probe to detect Cu2+ in live (human cervical HeLa) cancer cells. The emission intensity of NPP was almost recovered in HeLa cells by incubating ‘in situ’ the derived Cu2+ complex (NPP-Cu 2+ ) in the presence of a benchmark chelating agent such as EDTA (ethylenediaminetetraacetate). The fluorescent emission of NPP was reverted significantly in each cycle upon sequencial addition of Cu2+ and EDTA to the NPP solution. Overall, NPP is a novel, simple, economic and portable sensor that can detect Cu2+ in biological and environmental scenarios.
Article number111466
JournalJournal of Inorganic Biochemistry
Journal citation220
ISSN0162-0134
Year2021
PublisherElsevier
Accepted author manuscript
License
CC BY-NC-ND 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jinorgbio.2021.111466
Publication dates
Published online24 Apr 2021
Published in printJul 2021
FunderFundação para a Ciência e Tecnologia
FCT
RSC
FCT and IST
Engineering Laboratory
University of Westminster

Related outputs

RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg.
Murphy, J., Surendranath, K. and Kanagaraj, R. 2023. RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg. International Journal of Molecular Sciences. 24 (11) 9612. https://doi.org/10.3390/ijms24119612

Excessive reactive oxygen species induce transcription-dependent replication stress.
Andrs, Martin, Stoy, H., Boleslavska, Barbora, Chappidi, Nagaraja, Kanagaraj, R., Nascakova, Zuzana, Menon, Shruti, Rao, Satyajeet, Oravetzova, Anna, Dobrovolna, J., Surendranath, Kalpana, Lopes, M. and Janscak, P. 2023. Excessive reactive oxygen species induce transcription-dependent replication stress. Nature Communications . 14 (1) 1791. https://doi.org/10.1038/s41467-023-37341-y

The Adenylate-Uridylate-Rich element RNA binding protein ZFP36L1 suppresses replication stress-induced genomic instability
Sidali, A. 2023. The Adenylate-Uridylate-Rich element RNA binding protein ZFP36L1 suppresses replication stress-induced genomic instability. PhD thesis University of Westminster School of Life Sciences https://doi.org/10.34737/w2165

A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation
Anand Panchbhai, Munuse Ceyda Ishanzadeh, Smarana Pankanti, Ahmed Sidali, Nadeeen Solaiman, Radhakrishnan Kanagaraj, John J. Murphy and Kalpana Surendranath 2023. A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation. Computer Methods and Programs in Biomedicine. 232 107447. https://doi.org/10.1016/j.cmpb.2023.107447

AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity.
Sidali, A., Teotia, Varsha, Solaiman, Nadeen Shaikh, Bashir, Nahida, Kanagaraj, Radhakrishnan, Murphy, J. and Surendranath, K. 2021. AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. International Journal of Molecular Sciences. 23 (1) 96. https://doi.org/10.3390/ijms23010096

A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications
Anbu, S., Paul, A., Surendranath, K., Shaikh Solaiman, N. and Pombeiro, A.J.L. 2021. A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications. Sensors and Actuators B: Chemical. 337 129785. https://doi.org/10.1016/j.snb.2021.129785

RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis
Di Marco, S., Hasanova, Z., Kanagaraj, R., Chappidi, N., Altmannova, V., Menon, S., Sedlackova, H., Langhoff, J., Surendranath, K., Hühn, D., Bhowmick, R., Marini, V., Ferrari, S., Hickson, I.D., Krejci, L. and Janscak, P. 2017. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Molecular Cell. 66 (5), pp. 658-671. https://doi.org/10.1016/j.molcel.2017.05.006

Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice
Surendranath, K. 2009. Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice. Germany Lambert Academic Publishing GmbH & Company KG.

A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo
Surendranath, K. and Karande A.A. 2008. A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo. Clinical and Vaccine Immunology. 15 (5), pp. 737-743. https://doi.org/10.1128/CVI.00254-07

Production of paclitaxel by Fusarium solani isolated from Taxus celebica
Chakravarthi, B.V., Das, P., Surendranath, K., Karande, A.A. and Jayabaskaran, C. 2008. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. Journal of Biosciences. 33 (2), pp. 259-267. https://doi.org/10.1007/s12038-008-0043-6

Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin
Bagaria, A., Surendranath, K., Ramagopal, U.A., Ramakumar, S. and Karande, A.A. 2006. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. Journal of Biological Chemistry . 281, pp. 34465-34474. https://doi.org/10.1074/jbc.M601777200

Permalink - https://westminsterresearch.westminster.ac.uk/item/v4w9w/naphthalimide-phenanthroimidazole-incorporated-new-fluorescent-sensor-for-turn-on-cu2-detection-in-living-cancer-cells


Restricted files

Accepted author manuscript

Under embargo until 31 Dec 9999

Share this

Usage statistics

93 total views
1 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.