Excessive reactive oxygen species induce transcription-dependent replication stress.

Andrs, Martin, Stoy, H., Boleslavska, Barbora, Chappidi, Nagaraja, Kanagaraj, R., Nascakova, Zuzana, Menon, Shruti, Rao, Satyajeet, Oravetzova, Anna, Dobrovolna, J., Surendranath, Kalpana, Lopes, M. and Janscak, P. 2023. Excessive reactive oxygen species induce transcription-dependent replication stress. Nature Communications . 14 (1) 1791. https://doi.org/10.1038/s41467-023-37341-y

TitleExcessive reactive oxygen species induce transcription-dependent replication stress.
TypeJournal article
AuthorsAndrs, Martin, Stoy, H., Boleslavska, Barbora, Chappidi, Nagaraja, Kanagaraj, R., Nascakova, Zuzana, Menon, Shruti, Rao, Satyajeet, Oravetzova, Anna, Dobrovolna, J., Surendranath, Kalpana, Lopes, M. and Janscak, P.
AbstractElevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer. [Abstract copyright: © 2023. The Author(s).]
KeywordsS Phase - genetics
Reactive Oxygen Species
Hydroxyurea - pharmacology
DNA Replication
Humans
DNA
DNA-Binding Proteins - metabolism
Article number1791
JournalNature Communications
Journal citation14 (1)
ISSN2041-1723
Year2023
PublisherNature Publishing Group
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1038/s41467-023-37341-y
PubMed ID36997515
Publication dates
Published online30 Mar 2023

Related outputs

RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg.
Murphy, J., Surendranath, K. and Kanagaraj, R. 2023. RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg. International Journal of Molecular Sciences. 24 (11) 9612. https://doi.org/10.3390/ijms24119612

A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation
Anand Panchbhai, Munuse Ceyda Ishanzadeh, Smarana Pankanti, Ahmed Sidali, Nadeeen Solaiman, Radhakrishnan Kanagaraj, John J. Murphy and Kalpana Surendranath 2023. A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation. Computer Methods and Programs in Biomedicine. 232 107447. https://doi.org/10.1016/j.cmpb.2023.107447

AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity.
Sidali, A., Teotia, Varsha, Solaiman, Nadeen Shaikh, Bashir, Nahida, Kanagaraj, Radhakrishnan, Murphy, J. and Surendranath, K. 2021. AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. International Journal of Molecular Sciences. 23 (1) 96. https://doi.org/10.3390/ijms23010096

Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells
Anbu, Sellamuthu, Paul, Anup, Surendranath, Kalpana, Sidali, Ahmed and Pombeiro, Armando J.L. 2021. Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells. Journal of Inorganic Biochemistry. 220 111466. https://doi.org/10.1016/j.jinorgbio.2021.111466

A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications
Anbu, S., Paul, A., Surendranath, K., Shaikh Solaiman, N. and Pombeiro, A.J.L. 2021. A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications. Sensors and Actuators B: Chemical. 337 129785. https://doi.org/10.1016/j.snb.2021.129785

RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis
Di Marco, S., Hasanova, Z., Kanagaraj, R., Chappidi, N., Altmannova, V., Menon, S., Sedlackova, H., Langhoff, J., Surendranath, K., Hühn, D., Bhowmick, R., Marini, V., Ferrari, S., Hickson, I.D., Krejci, L. and Janscak, P. 2017. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Molecular Cell. 66 (5), pp. 658-671. https://doi.org/10.1016/j.molcel.2017.05.006

Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice
Surendranath, K. 2009. Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice. Germany Lambert Academic Publishing GmbH & Company KG.

A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo
Surendranath, K. and Karande A.A. 2008. A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo. Clinical and Vaccine Immunology. 15 (5), pp. 737-743. https://doi.org/10.1128/CVI.00254-07

Production of paclitaxel by Fusarium solani isolated from Taxus celebica
Chakravarthi, B.V., Das, P., Surendranath, K., Karande, A.A. and Jayabaskaran, C. 2008. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. Journal of Biosciences. 33 (2), pp. 259-267. https://doi.org/10.1007/s12038-008-0043-6

Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin
Bagaria, A., Surendranath, K., Ramagopal, U.A., Ramakumar, S. and Karande, A.A. 2006. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. Journal of Biological Chemistry . 281, pp. 34465-34474. https://doi.org/10.1074/jbc.M601777200

Permalink - https://westminsterresearch.westminster.ac.uk/item/w28xv/excessive-reactive-oxygen-species-induce-transcription-dependent-replication-stress


Share this

Usage statistics

58 total views
26 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.