Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice

Surendranath, K. 2009. Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice. Germany Lambert Academic Publishing GmbH & Company KG.

Title Abrus Toxins: Study on a dangerous lectin duo present in the seeds of Indian licorice
AuthorsSurendranath, K.
Abstract

Abrin and Abrus Agglutinin are natural toxins found in the seeds of the sub tropical climber Abrus precatorius. Both are proteins that are stable at extreme conditions and could be fatal to health when ingested. The dreadful nature of them could be judged by the fact that a single well-masticated seed is capable of killing an adult. The toxins work by getting inside the cells of a person s body and prevent the cells from making proteins, the building blocks of the cell. Eventually cell death occurs resulting in the seizure of the whole body. No anecdote exists for these toxins and symptoms of poisoning may differ depending on the route of exposure

KeywordsAbrus precatorius
Year2009
PublisherLambert Academic Publishing GmbH & Company KG
Publication dates
Published11 Nov 2009
Place of publicationGermany
ISBN9783838307923

Related outputs

RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg.
Murphy, J., Surendranath, K. and Kanagaraj, R. 2023. RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg. International Journal of Molecular Sciences. 24 (11) 9612. https://doi.org/10.3390/ijms24119612

Excessive reactive oxygen species induce transcription-dependent replication stress.
Andrs, Martin, Stoy, H., Boleslavska, Barbora, Chappidi, Nagaraja, Kanagaraj, R., Nascakova, Zuzana, Menon, Shruti, Rao, Satyajeet, Oravetzova, Anna, Dobrovolna, J., Surendranath, Kalpana, Lopes, M. and Janscak, P. 2023. Excessive reactive oxygen species induce transcription-dependent replication stress. Nature Communications . 14 (1) 1791. https://doi.org/10.1038/s41467-023-37341-y

A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation
Anand Panchbhai, Munuse Ceyda Ishanzadeh, Smarana Pankanti, Ahmed Sidali, Nadeeen Solaiman, Radhakrishnan Kanagaraj, John J. Murphy and Kalpana Surendranath 2023. A deep learning workflow for quantification of Micronuclei in DNA damage studies in cultured cancer cell lines: a proof of principle investigation. Computer Methods and Programs in Biomedicine. 232 107447. https://doi.org/10.1016/j.cmpb.2023.107447

AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity.
Sidali, A., Teotia, Varsha, Solaiman, Nadeen Shaikh, Bashir, Nahida, Kanagaraj, Radhakrishnan, Murphy, J. and Surendranath, K. 2021. AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. International Journal of Molecular Sciences. 23 (1) 96. https://doi.org/10.3390/ijms23010096

Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells
Anbu, Sellamuthu, Paul, Anup, Surendranath, Kalpana, Sidali, Ahmed and Pombeiro, Armando J.L. 2021. Naphthalimide-phenanthroimidazole incorporated new fluorescent sensor for “turn-on” Cu2+ detection in living cancer cells. Journal of Inorganic Biochemistry. 220 111466. https://doi.org/10.1016/j.jinorgbio.2021.111466

A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications
Anbu, S., Paul, A., Surendranath, K., Shaikh Solaiman, N. and Pombeiro, A.J.L. 2021. A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O74-, DNA, its live-cell imaging and pyrosequencing applications. Sensors and Actuators B: Chemical. 337 129785. https://doi.org/10.1016/j.snb.2021.129785

RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis
Di Marco, S., Hasanova, Z., Kanagaraj, R., Chappidi, N., Altmannova, V., Menon, S., Sedlackova, H., Langhoff, J., Surendranath, K., Hühn, D., Bhowmick, R., Marini, V., Ferrari, S., Hickson, I.D., Krejci, L. and Janscak, P. 2017. RECQ5 Helicase Cooperates with MUS81 Endonuclease in Processing Stalled Replication Forks at Common Fragile Sites during Mitosis. Molecular Cell. 66 (5), pp. 658-671. https://doi.org/10.1016/j.molcel.2017.05.006

A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo
Surendranath, K. and Karande A.A. 2008. A neutralizing antibody to the a chain of abrin inhibits abrin toxicity both in vitro and in vivo. Clinical and Vaccine Immunology. 15 (5), pp. 737-743. https://doi.org/10.1128/CVI.00254-07

Production of paclitaxel by Fusarium solani isolated from Taxus celebica
Chakravarthi, B.V., Das, P., Surendranath, K., Karande, A.A. and Jayabaskaran, C. 2008. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. Journal of Biosciences. 33 (2), pp. 259-267. https://doi.org/10.1007/s12038-008-0043-6

Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin
Bagaria, A., Surendranath, K., Ramagopal, U.A., Ramakumar, S. and Karande, A.A. 2006. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin I in relation to abrin. Journal of Biological Chemistry . 281, pp. 34465-34474. https://doi.org/10.1074/jbc.M601777200

Permalink - https://westminsterresearch.westminster.ac.uk/item/q32y3/-abrus-toxins-study-on-a-dangerous-lectin-duo-present-in-the-seeds-of-indian-licorice


Share this

Usage statistics

136 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.