Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach

Abdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh 2024. Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach. Big Data and Cognitive Computing. 8 (1) 6. https://doi.org/10.3390/bdcc8010006

TitleEnhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
TypeJournal article
AuthorsAbdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh
Abstract

In the era of digital advancements, the escalation of credit card fraud necessitates the development of robust and efficient fraud detection systems. This paper delves into the application of machine learning models, specifically focusing on ensemble methods, to enhance credit card fraud detection. Through an extensive review of existing literature, we identified limitations in current fraud detection technologies, including issues like data imbalance, concept drift, false positives/negatives, limited generalisability, and challenges in real-time processing. To address some of these shortcomings, we propose a novel ensemble model that integrates a Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Bagging, and Boosting classifiers. This ensemble model tackles the dataset imbalance problem associated with most credit card datasets by implementing under-sampling and the Synthetic Over-sampling Technique (SMOTE) on some machine learning algorithms. The evaluation of the model utilises a dataset comprising transaction records from European credit card holders, providing a realistic scenario for assessment. The methodology of the proposed model encompasses data pre-processing, feature engineering, model selection, and evaluation, with Google Colab computational capabilities facilitating efficient model training and testing. Comparative analysis between the proposed ensemble model, traditional machine learning methods, and individual classifiers reveals the superior performance of the ensemble in mitigating challenges associated with credit card fraud detection. Across accuracy, precision, recall, and F1-score metrics, the ensemble outperforms existing models. This paper underscores the efficacy of ensemble methods as a valuable tool in the battle against fraudulent transactions. The findings presented lay the groundwork for future advancements in the development of more resilient and adaptive fraud detection systems, which will become crucial as credit card fraud techniques continue to evolve.

Article number6
JournalBig Data and Cognitive Computing
Journal citation8 (1)
ISSN2504-2289
Year2024
PublisherMDPI
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.3390/bdcc8010006
Web address (URL)https://doi.org/10.3390/bdcc8010006
Publication dates
Published03 Jan 2024

Related outputs

Enhanced Image-Based Malware Classification Using Transformer-Based Convolutional Neural Networks (CNNs)
Ashawa, M., Owoh, N., Hosseinzadeh, S. and Osamor, Jude 2024. Enhanced Image-Based Malware Classification Using Transformer-Based Convolutional Neural Networks (CNNs). Electronics. 13 (20) 4081. https://doi.org/10.3390/electronics13204081

Malware Detection Based on API Call Sequence Analysis: A Gated Recurrent Unit–Generative Adversarial Network Model Approach
Owoh, Nsikak, Adejoh, J., Hosseinzadeh, S., Ashawa, M., Osamor, Jude and Qureshi, Ayyaz 2024. Malware Detection Based on API Call Sequence Analysis: A Gated Recurrent Unit–Generative Adversarial Network Model Approach. Future Internet. 16 (10), p. 369. https://doi.org/10.3390/fi16100369

Digital Forensics Challenges in Cyberspace: Overcoming Legitimacy and Privacy Issues Through Modularisation
Ashawa, M., Mansour, A., Riley, J., Osamor, J. and Owoh, N.P. 2024. Digital Forensics Challenges in Cyberspace: Overcoming Legitimacy and Privacy Issues Through Modularisation. Cloud Computing and Data Science. 5 (1), pp. 140-156. https://doi.org/10.37256/ccds.512024

An Adaptive Temporal Convolutional Network Autoencoder for Malicious Data Detection in Mobile Crowd Sensing
Nsikak Owoh, Jackie Riley, Moses Ashawa, Salaheddin Hosseinzadeh, Anand Philip and Jude Osamor 2024. An Adaptive Temporal Convolutional Network Autoencoder for Malicious Data Detection in Mobile Crowd Sensing. Sensors. 24 (7) 2353. https://doi.org/10.3390/s24072353

An Exploration of shared code execution for malware analysis
Moses Ashawa, Nsikak Pius Owoh, Jackie Riley, Jude Osamor and Salaheddin Hosseinzadeh 2024. An Exploration of shared code execution for malware analysis. 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA). Victoria, Seychelles 01 - 02 Feb 2024 IEEE . https://doi.org/10.1109/acdsa59508.2024.10467679

Preprint: Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
Abdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh 2024. Preprint: Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach. Preprints.org. https://doi.org/10.20944/preprints202312.1007.v1

Vehicular Propagation Velocity Forecasting Using Open CV
Udayan Das, Vandana Sharma, Madhabananda Das, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Vehicular Propagation Velocity Forecasting Using Open CV. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449587

Twitter Sentiment Analysis and Emotion Detection Using NLTK and TextBlob
Nehal, Divyank Jeet, Vandana Sharma, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Twitter Sentiment Analysis and Emotion Detection Using NLTK and TextBlob. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449540

Design and Implementation of an Optimized Mask RCNN Model for Liver Tumour Prediction and Segmentation
Raman Thakur, Dayal Rohan Volety, Vandana Sharma, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Design and Implementation of an Optimized Mask RCNN Model for Liver Tumour Prediction and Segmentation. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449653

Sustainable Climatic Metrics Determination with Ensemble Predictive Analytics
Ashis Pattanaik, Vandana Sharma, Kanhaiya Kunj, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Sustainable Climatic Metrics Determination with Ensemble Predictive Analytics. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449578

The Impact of Cyber Threats on the Global Food Supply Chain: a Focus on Grain Storage Security
Aliyu Yisa, Mohammed Gana Yisa, Jude Osamor and Mohammed Yisa 2023. The Impact of Cyber Threats on the Global Food Supply Chain: a Focus on Grain Storage Security. Authorea. https://doi.org/10.22541/au.169511622.28532721/v1

A big data study of language use and impact in radio broadcasting in China
Ruihua Zhang, Jincheng Zhou, Tao Hai, Shixue Zhang, Marvellous Iwendi, Mohd Asif Shah and Jude Osamor 2023. A big data study of language use and impact in radio broadcasting in China. Journal of Cloud Computing: Advances, Systems and Applications. 12 28. https://doi.org/10.1186/s13677-023-00399-6

Preprint: Higher Education Perceived Stress and Physical Stress: Big Data Analysis
Ruihua Zhang, Jincheng Zhou, Tao Hai, Shixue Zhang, Jude Osamor, Marvellous GodsPraise Iwendi and Mohammad Shah 2022. Preprint: Higher Education Perceived Stress and Physical Stress: Big Data Analysis. Research Square. https://doi.org/10.21203/rs.3.rs-2146058/v1

A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography
Manjari Singh Rathore, M. Poongodi, Praneet Saurabh, Umesh Kumar Lilhore, Sami Bourouis, Wajdi Alhakami, Jude Osamor and Mounir Hamdi 2022. A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography. Computers and Electrical Engineering. 102 108205. https://doi.org/10.1016/j.compeleceng.2022.108205

Inferences Derived from Reservoir Permeability Estimation Using Static and Dynamic Data: Core Data Analysis Versus Drawdown Tests
Francis Nwabia, Jude Osamor, Robinson Madu, Nkemakolam Izuwa and Anthony Chikwe 2021. Inferences Derived from Reservoir Permeability Estimation Using Static and Dynamic Data: Core Data Analysis Versus Drawdown Tests. in: Jia'en Lin (ed.) IPPTC 2021: Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference Springer Nature. pp. 184-196

Permalink - https://westminsterresearch.westminster.ac.uk/item/w80vz/enhancing-credit-card-fraud-detection-an-ensemble-machine-learning-approach


Share this

Usage statistics

99 total views
151 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.