Digital Forensics Challenges in Cyberspace: Overcoming Legitimacy and Privacy Issues Through Modularisation

Ashawa, M., Mansour, A., Riley, J., Osamor, J. and Owoh, N.P. 2024. Digital Forensics Challenges in Cyberspace: Overcoming Legitimacy and Privacy Issues Through Modularisation. Cloud Computing and Data Science. 5 (1), pp. 140-156. https://doi.org/10.37256/ccds.512024

TitleDigital Forensics Challenges in Cyberspace: Overcoming Legitimacy and Privacy Issues Through Modularisation
TypeJournal article
AuthorsAshawa, M., Mansour, A., Riley, J., Osamor, J. and Owoh, N.P.
Abstract

The significance of the cloud environment is growing in the current digital world. It provides several advantages, such as reduced expenses, the ability to adjust to different needs, adaptability and enhanced cooperation. The field of digital forensic investigations has encountered substantial difficulties in reconciling the requirement for efficient data analysis with the increasing apprehensions regarding privacy in recent times. As investigators analyse digital evidence to unearth crucial information, they must also traverse an intricate network of privacy rules and regulations. Given the increasing prevalence of remote work and the necessity for businesses to be adaptable and quick to react to shifting market circumstances, the cloud infrastructure has become a crucial asset for organisations of various scales. Although the cloud offers benefits such as scalability, flexibility and enhanced collaboration, it presents difficulties in digital forensic investigations regarding data protection, ownership and jurisdictional boundaries. These concerns are becoming increasingly significant as more data is kept in the cloud. In this paper, we present three major challenges that are faced during cloud-based forensics investigation. We analyse the extent to which different data formats increase complexity in forensics investigations in cyberspace. This paper analyses three core challenges facing digital forensics in the cloud environment: legitimacy, complexity and an increase in data volume, looking at the implications these have on data liable for legal issues in court. These challenges contribute to the backlog in digital forensics investigations due to a lack of modularisation of the procedures. To address these concerns, modularisation model is proposed to offer a way to integrate traditional processing functions while ensuring strict adherence to privacy protocols. To overcome these challenges, we propose modularisation as a strategy for improving the future of digital forensic research’s operational efficiency, overcoming the identified challenges faced during cloud-based investigations and demonstrating how organisations can mitigate potential risks associated with storing sensitive information in the cloud.

JournalCloud Computing and Data Science
Journal citation5 (1), pp. 140-156
ISSN2737-4092
2737-4106
Year2024
PublisherUniversal Wiser Publisher
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.37256/ccds.512024
Web address (URL)http://dx.doi.org/10.37256/ccds.512024
Publication dates
Published2024

Related outputs

An Adaptive Temporal Convolutional Network Autoencoder for Malicious Data Detection in Mobile Crowd Sensing
Nsikak Owoh, Jackie Riley, Moses Ashawa, Salaheddin Hosseinzadeh, Anand Philip and Jude Osamor 2024. An Adaptive Temporal Convolutional Network Autoencoder for Malicious Data Detection in Mobile Crowd Sensing. Sensors. 24 (7) 2353. https://doi.org/10.3390/s24072353

An Exploration of shared code execution for malware analysis
Moses Ashawa, Nsikak Pius Owoh, Jackie Riley, Jude Osamor and Salaheddin Hosseinzadeh 2024. An Exploration of shared code execution for malware analysis. 2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA). Victoria, Seychelles 01 - 02 Feb 2024 IEEE . https://doi.org/10.1109/acdsa59508.2024.10467679

Preprint: Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
Abdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh 2024. Preprint: Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach. Preprints.org. https://doi.org/10.20944/preprints202312.1007.v1

Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
Abdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh 2024. Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach. Big Data and Cognitive Computing. 8 (1) 6. https://doi.org/10.3390/bdcc8010006

Vehicular Propagation Velocity Forecasting Using Open CV
Udayan Das, Vandana Sharma, Madhabananda Das, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Vehicular Propagation Velocity Forecasting Using Open CV. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449587

Twitter Sentiment Analysis and Emotion Detection Using NLTK and TextBlob
Nehal, Divyank Jeet, Vandana Sharma, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Twitter Sentiment Analysis and Emotion Detection Using NLTK and TextBlob. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449540

Design and Implementation of an Optimized Mask RCNN Model for Liver Tumour Prediction and Segmentation
Raman Thakur, Dayal Rohan Volety, Vandana Sharma, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Design and Implementation of an Optimized Mask RCNN Model for Liver Tumour Prediction and Segmentation. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449653

Sustainable Climatic Metrics Determination with Ensemble Predictive Analytics
Ashis Pattanaik, Vandana Sharma, Kanhaiya Kunj, Sushruta Mishra, Celestine Iwendi and Jude Osamor 2023. Sustainable Climatic Metrics Determination with Ensemble Predictive Analytics. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM). Dubai, United Arab Emirates 12 - 13 Dec 2023 IEEE . https://doi.org/10.1109/iccakm58659.2023.10449578

The Impact of Cyber Threats on the Global Food Supply Chain: a Focus on Grain Storage Security
Aliyu Yisa, Mohammed Gana Yisa, Jude Osamor and Mohammed Yisa 2023. The Impact of Cyber Threats on the Global Food Supply Chain: a Focus on Grain Storage Security. Authorea. https://doi.org/10.22541/au.169511622.28532721/v1

A big data study of language use and impact in radio broadcasting in China
Ruihua Zhang, Jincheng Zhou, Tao Hai, Shixue Zhang, Marvellous Iwendi, Mohd Asif Shah and Jude Osamor 2023. A big data study of language use and impact in radio broadcasting in China. Journal of Cloud Computing: Advances, Systems and Applications. 12 28. https://doi.org/10.1186/s13677-023-00399-6

Preprint: Higher Education Perceived Stress and Physical Stress: Big Data Analysis
Ruihua Zhang, Jincheng Zhou, Tao Hai, Shixue Zhang, Jude Osamor, Marvellous GodsPraise Iwendi and Mohammad Shah 2022. Preprint: Higher Education Perceived Stress and Physical Stress: Big Data Analysis. Research Square. https://doi.org/10.21203/rs.3.rs-2146058/v1

A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography
Manjari Singh Rathore, M. Poongodi, Praneet Saurabh, Umesh Kumar Lilhore, Sami Bourouis, Wajdi Alhakami, Jude Osamor and Mounir Hamdi 2022. A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography. Computers and Electrical Engineering. 102 108205. https://doi.org/10.1016/j.compeleceng.2022.108205

Inferences Derived from Reservoir Permeability Estimation Using Static and Dynamic Data: Core Data Analysis Versus Drawdown Tests
Francis Nwabia, Jude Osamor, Robinson Madu, Nkemakolam Izuwa and Anthony Chikwe 2021. Inferences Derived from Reservoir Permeability Estimation Using Static and Dynamic Data: Core Data Analysis Versus Drawdown Tests. in: Jia'en Lin (ed.) IPPTC 2021: Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference Springer Nature. pp. 184-196

Permalink - https://westminsterresearch.westminster.ac.uk/item/w95x7/digital-forensics-challenges-in-cyberspace-overcoming-legitimacy-and-privacy-issues-through-modularisation


Share this

Usage statistics

12 total views
16 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.