Multiscale Analysis of Microvascular Blood Flow and Oxygenation

Thanaj, M., Chipperfield, A.J. and Clough, G.F. 2018. Multiscale Analysis of Microvascular Blood Flow and Oxygenation. World Congress on Medical Physics and Biomedical Engineering 2018. Prague, Czech Republic 03 - 08 Jun 2018 Springer. https://doi.org/10.1007/978-981-10-9038-7_36

TitleMultiscale Analysis of Microvascular Blood Flow and Oxygenation
AuthorsThanaj, M., Chipperfield, A.J. and Clough, G.F.
TypeConference paper
Abstract

The purpose of this study is to investigate the feasibility of nonlinear methods for differentiating between haemodynamic steady states as a potential method of identifying microvascular dysfunction. As conventional nonlinear measures do not take into account the multiple time scales of the processes modulating microvascular function, here we evaluate the efficacy of multiscale analysis as a better discriminator of changes in microvascular health. We describe the basis and the implementation of the multiscale analysis of the microvascular blood flux (BF) and tissue oxygenation (OXY: oxyHb) signals recorded from the skin of 15 healthy male volunteers, age 29.2 ± 8.1y (mean ± SD), in two haemodynamic steady states at 33 °C and during warming at 43 °C to generate a local thermal hyperaemia (LTH). To investigate the influence of varying process time scales, multiscale analysis is employed on Sample entropy (MSE), to quantify signal regularity and Lempel and Ziv (MSLZ) and effort to compress (METC) complexity, to measure the randomness of the time series. Our findings show that there was a good discrimination in the multiscale indexes of both the BF (p = 0.001) and oxyHb (MSE, p = 0.002; METC and MSLZ, p < 0.001) signals between the two haemodynamic steady states, having the highest classification accuracy in oxyHb signals (MSE: 86.67%, MSLZ: 90.00% and METC: 93.33%). This study shows that “multiscale-based” analysis of blood flow and tissue oxygenation signals can identify different microvascular functional states and thus has potential for the clinical assessment and diagnosis of pathophysiological conditions.

Year2018
ConferenceWorld Congress on Medical Physics and Biomedical Engineering 2018
PublisherSpringer
Publication dates
Published in print2019
Published30 May 2018
JournalWorld Congress on Medical Physics and Biomedical Engineering 2018
Journal citation68 (2)
ISBN9789811090387
9789811090370
Digital Object Identifier (DOI)https://doi.org/10.1007/978-981-10-9038-7_36

Related outputs

MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease
Marjola Thanaj, Nicolas Basty, Brandon Whitcher, Jimmy D. Bell and E. Louise Thomas 2024. MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. Obesity (Silver Spring). 32 (9), pp. 1699-1708. https://doi.org/10.1002/oby.24108

Preprint: MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease
Marjola Thanaj, Nicolas Basty, Brandon Whitcher, Jimmy D. Bell and E. Louise Thomas 2024. Preprint: MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. medRxiv. https://doi.org/10.1101/2024.03.27.24304957

Genetic evidence for distinct biological mechanisms that link adiposity to type 2 diabetes: towards precision medicine
Abraham, Angela, Cule, M., Thanaj, M., Basty, N., Hashemloo, M.A., Sorokin, E., Whitcher, B., Burgess, S., Bell, J.D., Sattar, N., Thomas, E.L. and Yaghootkar, H. 2024. Genetic evidence for distinct biological mechanisms that link adiposity to type 2 diabetes: towards precision medicine. Diabetes. 73 (6), pp. 1012-1025. https://doi.org/10.2337/db23-1005

Precision MRI phenotyping of muscle volume and quality at a population scale
Thanaj, M., Basty, N., Whitcher, B., Sorokin, E., Liu, Y., Srinivasan, R., Cule, M., Thomas, E.L. and Bell, J.D. 2024. Precision MRI phenotyping of muscle volume and quality at a population scale. Frontiers in Physiology. 15 1288657. https://doi.org/10.3389/fphys.2024.1288657

Liver Shape Analysis using Statistical Parametric Maps at Population Scale
Thanaj, M., Basty, N., Cule, M., Sorokin, E., Whitcher, B., Bell, J.D. and Thomas, E.L. 2024. Liver Shape Analysis using Statistical Parametric Maps at Population Scale. BMC Medical Imaging. 24 15. https://doi.org/10.1186/s12880-023-01149-5

Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors
Thanaj, M., Basty, N., Cule, M., Sorokin, E., Whitcher, B., Srinivasan, R., Lennon, R., Bell, J.D. and Thomas, E.L. 2023. Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors. BMC Nephrology. 24 362. https://doi.org/10.1186/s12882-023-03407-8

Preprint: Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors
Thanaj, M., Basty, N., Cule, M., Sorokin, E., Whitcher, B., Srinivasan, R., Lennon, R., Bell, J.D. and Thomas, E.L. 2023. Preprint: Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors. medRxiv. https://doi.org/10.1101/2023.06.26.23291901

Abdominal imaging associates body composition with COVID-19 severity
Basty, N., Sorokin, E., Thanaj, M., Srinivasan, R., Whitcher, B., Bell, J.D., Cule, M. and Thomas, E.L. 2023. Abdominal imaging associates body composition with COVID-19 severity. PLoS ONE. 18 (4) e0283506. https://doi.org/10.1371/journal.pone.0283506

Preprint: Precision MRI phenotyping of muscle volume and quality at a population scale
Marjola Thanaj, Nicolas Basty, Brandon Whitcher, Elena P. Sorokin, Yi Liu, Ramprakash Srinivasan, Madeleine Cule, E. Louise Thomas and Jimmy D. Bell 2023. Preprint: Precision MRI phenotyping of muscle volume and quality at a population scale. medRxiv. https://doi.org/10.1101/2023.03.02.23286689

Preprint: Cardiovascular measures from abdominal MRI provide insights into abdominal vessel genetic architecture
Nicolas Basty, Elena P. Sorokin, Marjola Thanaj, Brandon Whitcher, Yi Liu, Jimmy D. Bell, E. Louise Thomas and Madeleine Cule 2023. Preprint: Cardiovascular measures from abdominal MRI provide insights into abdominal vessel genetic architecture. medRxiv. https://doi.org/10.1101/2022.08.02.22278060

Artifact-Free Fat-Water Separation in Dixon MRI using Deep Learning
Basty, N., Thanaj, M., Cule, M., Sorokin, E., Liu, Y., Thomas, E.L., Bell, J.D. and Whitcher, B. 2023. Artifact-Free Fat-Water Separation in Dixon MRI using Deep Learning. Journal of Big Data. 10 4. https://doi.org/10.1186/s40537-022-00677-1

Preprint: Liver Shape Analysis using Statistical Parametric Maps at Population Scale
Thanaj, M., Basty, N., Cule, M., Sorokin, E.P., Whitcher, B., Bell, J.D. and Thomas, E.L. 2023. Preprint: Liver Shape Analysis using Statistical Parametric Maps at Population Scale. medRxiv. https://doi.org/10.1101/2022.08.18.22278951

Genetic and environmental determinants of diastolic heart function
Marjola Thanaj, Johanna Mielke, Kathryn A. McGurk, Wenjia Bai, Nicolò Savioli, Antonio de Marvao, Hannah V. Meyer, Lingyao Zeng, Florian Sohler, R. Thomas Lumbers, Martin R. Wilkins, James S. Ware, Christian Bender, Daniel Rueckert, Aidan MacNamara, Daniel F. Freitag and Declan P. O’Regan 2022. Genetic and environmental determinants of diastolic heart function. Nature Cardiovascular Research. 1, pp. 361-371. https://doi.org/10.1038/s44161-022-00048-2

Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling
Asaturyan, A.H., Basty, N., Thanaj, M., Whitcher, B., Thomas, E.L. and Bell, J.D. 2022. Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling. PLoS ONE. 17 (9) e0273171. https://doi.org/10.1371/journal.pone.0273171

Precision MRI Phenotyping Enables Detection of Small Changes in Body Composition for Longitudinal Cohorts
Whitcher, B., Thanaj, M., Cule, M., Liu, Y., Basty, N., Sorokin, E., Bell, J.D. and Thomas, E.L. 2022. Precision MRI Phenotyping Enables Detection of Small Changes in Body Composition for Longitudinal Cohorts. Scientific Reports. 12 3748. https://doi.org/10.1038/s41598-022-07556-y

Preprint: Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants
Antonio de Marvao, Kathryn A. McGurk, Sean L. Zheng, Marjola Thanaj, Wenjia Bai, Jinming Duan, Carlo Biffi, Francesco Mazzarotto, Ben Statton, Timothy J.W. Dawes, Nicolò Savioli, Brian P. Halliday, Xiao Xu, Rachel J. Buchan, A John Baksi, Marina Quinlan, Paweł Tokarczuk, Upasana Tayal, Catherine Francis, Nicola Whiffin, Pantazis I. Theotokis, Xiaolei Zhang, Mikyung Jang, Alaine Berry, Antonis Pantazis, Paul J.R. Barton, Daniel Rueckert, Sanjay K. Prasad, Roddy Walsh, Carolyn Y. Ho, Stuart A. Cook, James S. Ware and Declan P. O’Regan 2021. Preprint: Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants. medRxiv. https://doi.org/10.1101/2021.01.21.21249470

Preprint: Swap-Free Fat-Water Separation in Dixon MRI using Conditional Generative Adversarial Networks
Basty, Nicolas, Thanaj, Marjola, Cule, Madeleine, Sorokin, Elena, Liu, Yi, Bell, Jimmy D., Thomas, E. Louise and Whitcher, Brandon 2021. Preprint: Swap-Free Fat-Water Separation in Dixon MRI using Conditional Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.2107.14175

Mass Univariate Regression Analysis for Three-Dimensional Liver Image-Derived Phenotypes
Thanaj, M., Basty, N., Liu, Y., Cule, M., Sorokin, E., Thomas, E.L., Bell, J.D. and Whitcher, B. 2021. Mass Univariate Regression Analysis for Three-Dimensional Liver Image-Derived Phenotypes. Annual Conference on Medical Image Understanding and Analysis. University of Oxford 12 - 14 Jul 2021 Springer. https://doi.org/10.1007/978-3-030-80432-9_13

Multiscale, multidomain analysis of microvascular flow dynamics
Chipperfield, A.J., Thanaj, M. and Clough, G.F. 2020. Multiscale, multidomain analysis of microvascular flow dynamics. Experimental Physiology. 105 (9), pp. 1452-1458. https://doi.org/10.1113/ep087874

Enhanced flow-motion complexity of skin microvascular perfusion in Sherpas and lowlanders during ascent to high altitude
Carey, D., Thanaj, M., Davies, T., Gilbert-Kawai, E., Mitchell, K., Levett, D.Z.H., Mythen, M.G., Martin, D.S., Grocott, M.P., Chipperfield, A.J. and Clough, G.F. 2019. Enhanced flow-motion complexity of skin microvascular perfusion in Sherpas and lowlanders during ascent to high altitude. Scientific Reports. 9 14391. https://doi.org/10.1038/s41598-019-50774-0

Attractor Reconstruction Analysis for Blood Flow Signals
Thanaj, M., Chipperfield, A.J. and Clough, G.F. 2019. Attractor Reconstruction Analysis for Blood Flow Signals. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany 23 - 27 Jul 2019 IEEE . https://doi.org/10.1109/embc.2019.8856856

Multi-domain analysis of microvascular flow motion dynamics in NAFLD
Chipperfield, A.J., Thanaj, M., Scorletti, E., Byrne, C.D. and Clough, G.F. 2019. Multi-domain analysis of microvascular flow motion dynamics in NAFLD. Microcirculation. 26 (5) e12538. https://doi.org/10.1111/micc.12538

Analysis of microvascular blood flow and oxygenation: Discrimination between two haemodynamic steady states using nonlinear measures and multiscale analysis
Thanaj, M., Chipperfield, A.J. and Clough, G.F. 2018. Analysis of microvascular blood flow and oxygenation: Discrimination between two haemodynamic steady states using nonlinear measures and multiscale analysis. Computers in Biology and Medicine. 102, pp. 157-167. https://doi.org/10.1016/j.compbiomed.2018.09.026

Permalink - https://westminsterresearch.westminster.ac.uk/item/w8x90/multiscale-analysis-of-microvascular-blood-flow-and-oxygenation


Share this

Usage statistics

32 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.