Genetic and environmental determinants of diastolic heart function

Marjola Thanaj, Johanna Mielke, Kathryn A. McGurk, Wenjia Bai, Nicolò Savioli, Antonio de Marvao, Hannah V. Meyer, Lingyao Zeng, Florian Sohler, R. Thomas Lumbers, Martin R. Wilkins, James S. Ware, Christian Bender, Daniel Rueckert, Aidan MacNamara, Daniel F. Freitag and Declan P. O’Regan 2022. Genetic and environmental determinants of diastolic heart function. Nature Cardiovascular Research. 1, pp. 361-371. https://doi.org/10.1038/s44161-022-00048-2

TitleGenetic and environmental determinants of diastolic heart function
TypeJournal article
AuthorsMarjola Thanaj, Johanna Mielke, Kathryn A. McGurk, Wenjia Bai, Nicolò Savioli, Antonio de Marvao, Hannah V. Meyer, Lingyao Zeng, Florian Sohler, R. Thomas Lumbers, Martin R. Wilkins, James S. Ware, Christian Bender, Daniel Rueckert, Aidan MacNamara, Daniel F. Freitag and Declan P. O’Regan
Abstract

Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine-learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified nine significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets.

JournalNature Cardiovascular Research
Journal citation1, pp. 361-371
ISSN2731-0590
Year2022
PublisherSpringer
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1038/s44161-022-00048-2
Web address (URL)https://doi.org/10.1038/s44161-022-00048-2
Publication dates
Published13 Apr 2022

Related outputs

Preprint: Comparing DXA and MRI body composition measurements in cross-sectional and longitudinal cohorts
Nicolas Basty, Marjola Thanaj, Brandon Whitcher, Jimmy D Bell and E. Louise Thomas 2024. Preprint: Comparing DXA and MRI body composition measurements in cross-sectional and longitudinal cohorts. medRxiv. https://doi.org/10.1101/2024.12.12.24318943

MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease
Marjola Thanaj, Nicolas Basty, Brandon Whitcher, Jimmy D. Bell and E. Louise Thomas 2024. MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. Obesity (Silver Spring). 32 (9), pp. 1699-1708. https://doi.org/10.1002/oby.24108

Preprint: MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease
Marjola Thanaj, Nicolas Basty, Brandon Whitcher, Jimmy D. Bell and E. Louise Thomas 2024. Preprint: MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. medRxiv. https://doi.org/10.1101/2024.03.27.24304957

Genetic evidence for distinct biological mechanisms that link adiposity to type 2 diabetes: towards precision medicine
Abraham, Angela, Cule, M., Thanaj, M., Basty, N., Hashemloo, M.A., Sorokin, E., Whitcher, B., Burgess, S., Bell, J.D., Sattar, N., Thomas, E.L. and Yaghootkar, H. 2024. Genetic evidence for distinct biological mechanisms that link adiposity to type 2 diabetes: towards precision medicine. Diabetes. 73 (6), pp. 1012-1025. https://doi.org/10.2337/db23-1005

Precision MRI phenotyping of muscle volume and quality at a population scale
Thanaj, M., Basty, N., Whitcher, B., Sorokin, E., Liu, Y., Srinivasan, R., Cule, M., Thomas, E.L. and Bell, J.D. 2024. Precision MRI phenotyping of muscle volume and quality at a population scale. Frontiers in Physiology. 15 1288657. https://doi.org/10.3389/fphys.2024.1288657

Liver Shape Analysis using Statistical Parametric Maps at Population Scale
Thanaj, M., Basty, N., Cule, M., Sorokin, E., Whitcher, B., Bell, J.D. and Thomas, E.L. 2024. Liver Shape Analysis using Statistical Parametric Maps at Population Scale. BMC Medical Imaging. 24 15. https://doi.org/10.1186/s12880-023-01149-5

Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors
Thanaj, M., Basty, N., Cule, M., Sorokin, E., Whitcher, B., Srinivasan, R., Lennon, R., Bell, J.D. and Thomas, E.L. 2023. Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors. BMC Nephrology. 24 362. https://doi.org/10.1186/s12882-023-03407-8

Preprint: Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors
Thanaj, M., Basty, N., Cule, M., Sorokin, E., Whitcher, B., Srinivasan, R., Lennon, R., Bell, J.D. and Thomas, E.L. 2023. Preprint: Kidney Shape Statistical Analysis: Associations with Disease and Anthropometric Factors. medRxiv. https://doi.org/10.1101/2023.06.26.23291901

Abdominal imaging associates body composition with COVID-19 severity
Basty, N., Sorokin, E., Thanaj, M., Srinivasan, R., Whitcher, B., Bell, J.D., Cule, M. and Thomas, E.L. 2023. Abdominal imaging associates body composition with COVID-19 severity. PLoS ONE. 18 (4) e0283506. https://doi.org/10.1371/journal.pone.0283506

Preprint: Precision MRI phenotyping of muscle volume and quality at a population scale
Marjola Thanaj, Nicolas Basty, Brandon Whitcher, Elena P. Sorokin, Yi Liu, Ramprakash Srinivasan, Madeleine Cule, E. Louise Thomas and Jimmy D. Bell 2023. Preprint: Precision MRI phenotyping of muscle volume and quality at a population scale. medRxiv. https://doi.org/10.1101/2023.03.02.23286689

Preprint: Cardiovascular measures from abdominal MRI provide insights into abdominal vessel genetic architecture
Nicolas Basty, Elena P. Sorokin, Marjola Thanaj, Brandon Whitcher, Yi Liu, Jimmy D. Bell, E. Louise Thomas and Madeleine Cule 2023. Preprint: Cardiovascular measures from abdominal MRI provide insights into abdominal vessel genetic architecture. medRxiv. https://doi.org/10.1101/2022.08.02.22278060

Artifact-Free Fat-Water Separation in Dixon MRI using Deep Learning
Basty, N., Thanaj, M., Cule, M., Sorokin, E., Liu, Y., Thomas, E.L., Bell, J.D. and Whitcher, B. 2023. Artifact-Free Fat-Water Separation in Dixon MRI using Deep Learning. Journal of Big Data. 10 4. https://doi.org/10.1186/s40537-022-00677-1

Preprint: Liver Shape Analysis using Statistical Parametric Maps at Population Scale
Thanaj, M., Basty, N., Cule, M., Sorokin, E.P., Whitcher, B., Bell, J.D. and Thomas, E.L. 2023. Preprint: Liver Shape Analysis using Statistical Parametric Maps at Population Scale. medRxiv. https://doi.org/10.1101/2022.08.18.22278951

Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling
Asaturyan, A.H., Basty, N., Thanaj, M., Whitcher, B., Thomas, E.L. and Bell, J.D. 2022. Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling. PLoS ONE. 17 (9) e0273171. https://doi.org/10.1371/journal.pone.0273171

Precision MRI Phenotyping Enables Detection of Small Changes in Body Composition for Longitudinal Cohorts
Whitcher, B., Thanaj, M., Cule, M., Liu, Y., Basty, N., Sorokin, E., Bell, J.D. and Thomas, E.L. 2022. Precision MRI Phenotyping Enables Detection of Small Changes in Body Composition for Longitudinal Cohorts. Scientific Reports. 12 3748. https://doi.org/10.1038/s41598-022-07556-y

Preprint: Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants
Antonio de Marvao, Kathryn A. McGurk, Sean L. Zheng, Marjola Thanaj, Wenjia Bai, Jinming Duan, Carlo Biffi, Francesco Mazzarotto, Ben Statton, Timothy J.W. Dawes, Nicolò Savioli, Brian P. Halliday, Xiao Xu, Rachel J. Buchan, A John Baksi, Marina Quinlan, Paweł Tokarczuk, Upasana Tayal, Catherine Francis, Nicola Whiffin, Pantazis I. Theotokis, Xiaolei Zhang, Mikyung Jang, Alaine Berry, Antonis Pantazis, Paul J.R. Barton, Daniel Rueckert, Sanjay K. Prasad, Roddy Walsh, Carolyn Y. Ho, Stuart A. Cook, James S. Ware and Declan P. O’Regan 2021. Preprint: Outcomes and phenotypic expression of rare variants in hypertrophic cardiomyopathy genes amongst UK Biobank participants. medRxiv. https://doi.org/10.1101/2021.01.21.21249470

Preprint: Swap-Free Fat-Water Separation in Dixon MRI using Conditional Generative Adversarial Networks
Basty, Nicolas, Thanaj, Marjola, Cule, Madeleine, Sorokin, Elena, Liu, Yi, Bell, Jimmy D., Thomas, E. Louise and Whitcher, Brandon 2021. Preprint: Swap-Free Fat-Water Separation in Dixon MRI using Conditional Generative Adversarial Networks. arXiv. https://doi.org/10.48550/arXiv.2107.14175

Mass Univariate Regression Analysis for Three-Dimensional Liver Image-Derived Phenotypes
Thanaj, M., Basty, N., Liu, Y., Cule, M., Sorokin, E., Thomas, E.L., Bell, J.D. and Whitcher, B. 2021. Mass Univariate Regression Analysis for Three-Dimensional Liver Image-Derived Phenotypes. Annual Conference on Medical Image Understanding and Analysis. University of Oxford 12 - 14 Jul 2021 Springer. https://doi.org/10.1007/978-3-030-80432-9_13

Multiscale, multidomain analysis of microvascular flow dynamics
Chipperfield, A.J., Thanaj, M. and Clough, G.F. 2020. Multiscale, multidomain analysis of microvascular flow dynamics. Experimental Physiology. 105 (9), pp. 1452-1458. https://doi.org/10.1113/ep087874

Enhanced flow-motion complexity of skin microvascular perfusion in Sherpas and lowlanders during ascent to high altitude
Carey, D., Thanaj, M., Davies, T., Gilbert-Kawai, E., Mitchell, K., Levett, D.Z.H., Mythen, M.G., Martin, D.S., Grocott, M.P., Chipperfield, A.J. and Clough, G.F. 2019. Enhanced flow-motion complexity of skin microvascular perfusion in Sherpas and lowlanders during ascent to high altitude. Scientific Reports. 9 14391. https://doi.org/10.1038/s41598-019-50774-0

Attractor Reconstruction Analysis for Blood Flow Signals
Thanaj, M., Chipperfield, A.J. and Clough, G.F. 2019. Attractor Reconstruction Analysis for Blood Flow Signals. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany 23 - 27 Jul 2019 IEEE . https://doi.org/10.1109/embc.2019.8856856

Multi-domain analysis of microvascular flow motion dynamics in NAFLD
Chipperfield, A.J., Thanaj, M., Scorletti, E., Byrne, C.D. and Clough, G.F. 2019. Multi-domain analysis of microvascular flow motion dynamics in NAFLD. Microcirculation. 26 (5) e12538. https://doi.org/10.1111/micc.12538

Multiscale Analysis of Microvascular Blood Flow and Oxygenation
Thanaj, M., Chipperfield, A.J. and Clough, G.F. 2018. Multiscale Analysis of Microvascular Blood Flow and Oxygenation. World Congress on Medical Physics and Biomedical Engineering 2018. Prague, Czech Republic 03 - 08 Jun 2018 Springer. https://doi.org/10.1007/978-981-10-9038-7_36

Analysis of microvascular blood flow and oxygenation: Discrimination between two haemodynamic steady states using nonlinear measures and multiscale analysis
Thanaj, M., Chipperfield, A.J. and Clough, G.F. 2018. Analysis of microvascular blood flow and oxygenation: Discrimination between two haemodynamic steady states using nonlinear measures and multiscale analysis. Computers in Biology and Medicine. 102, pp. 157-167. https://doi.org/10.1016/j.compbiomed.2018.09.026

Permalink - https://westminsterresearch.westminster.ac.uk/item/w8xzz/genetic-and-environmental-determinants-of-diastolic-heart-function


Share this

Usage statistics

33 total views
12 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.