Whole-genome fetal and maternal DNA methylation analysis using MeDIP-NGS for the identification of differentially methylated regions

Anna Keravnou, Marios Ioannides, Kyriakos Tsangaras, Charalambos Loizides, Michael D. Hadjidaniel, Elisavet a. Papageorgiou, Skevi Kyriakou, Pavlos Antoniou, Petros Mina, Achilleas Achilleos, Maria Neofytou, Elena Kypri, Carolina Sismani, George koumbaris and Philippos C. Patsalis 2016. Whole-genome fetal and maternal DNA methylation analysis using MeDIP-NGS for the identification of differentially methylated regions. Genetics Research. 98 e15. https://doi.org/10.1017/S0016672316000136

TitleWhole-genome fetal and maternal DNA methylation analysis using MeDIP-NGS for the identification of differentially methylated regions
TypeJournal article
AuthorsAnna Keravnou, Marios Ioannides, Kyriakos Tsangaras, Charalambos Loizides, Michael D. Hadjidaniel, Elisavet a. Papageorgiou, Skevi Kyriakou, Pavlos Antoniou, Petros Mina, Achilleas Achilleos, Maria Neofytou, Elena Kypri, Carolina Sismani, George koumbaris and Philippos C. Patsalis
Abstract

DNA methylation is an epigenetic marker that has been shown to vary significantly across different tissues. Taking advantage of the methylation differences between placenta-derived cell-free DNA and maternal blood, several groups employed different approaches for the discovery of fetal-specific biomarkers. The aim of this study was to analyse whole-genome fetal and maternal methylomes in order to identify and confirm the presence of differentially methylated regions (DMRs). We have initially utilized methylated DNA immunoprecipitation (MeDIP) and next-generation sequencing (NGS) to identify genome-wide DMRs between chorionic villus sampling (CVS) and female non-pregnant plasma (PL) and peripheral blood (WBF) samples. Next, using specific criteria, 331 fetal-specific DMRs were selected and confirmed in eight CVS, eight WBF and eight PL samples by combining MeDIP and in-solution targeted enrichment followed by NGS. Results showed higher enrichment in CVS samples as compared to both WBF and PL samples, confirming the distinct methylation levels between fetal and maternal DNA for the selected DMRs. We have successfully implemented a novel approach for the discovery and confirmation of a significant number of fetal-specific DMRs by combining for the first time MeDIP and in-solution targeted enrichment followed by NGS. The implementation of this double-enrichment approach is highly efficient and enables the detailed analysis of multiple DMRs by targeted NGS. Also, this is, to our knowledge, the first reported application of MeDIP on plasma samples, which leverages the implementation of our enrichment methodology in the detection of fetal abnormalities in maternal plasma.

Article numbere15
JournalGenetics Research
Journal citation98
Year2016
PublisherCambridge University Press
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1017/S0016672316000136
PubMed ID27834155
Web address (URL)https://pubmed.ncbi.nlm.nih.gov/27834155/
Publication dates
Published11 Nov 2016

Related outputs

Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA
Neofytou, M. 2020. Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genetics in Medicine. 22 (5), pp. 962-973. https://doi.org/10.1038/s41436-019-0748-y

Genomewide copy number alteration screening of circulating plasma DNA: potential for the detection of incipient tumors
L. Lenaerts, P. Vandenberghe, N. Brison, H. Che, M. Neofytou, M. Verheecke, L. Leemans, C. Maggen, B. Dewaele, L. Dehaspe, S. Vanderschueren, D. Dierickx, V. Vandecaveye, F. Amant and J. R. Vermeesch 2019. Genomewide copy number alteration screening of circulating plasma DNA: potential for the detection of incipient tumors. Annals of Oncology. 30 (1), pp. p85-95. https://doi.org/10.1093/annonc/mdy476

Maternal liver transplant: Another cause of discordant fetal sex determination using cell-free DNA.
Maria Neofytou, Nathalie Brison, Kris Van den Bogaert, Luc Dehaspe, Koen Devriendt, Anja Geerts and Joris R. Vermeesch 2018. Maternal liver transplant: Another cause of discordant fetal sex determination using cell-free DNA. Prenatal Diagnosis. 38 (2), pp. 148-150. https://doi.org/10.1002/pd.5194

MeDIP combined with in-solution targeted enrichment followed by NGS: Inter-individual methylation variability of fetal-specific biomarkers and their implementation in a proof of concept study for NIPT
Anna Keravnou, Marios Ioannides, Charalambos Loizides, Kyriakos Tsangaras, Achilleas Achilleos, Petros Mina, Elena Kypri, Michael D. Hadjidaniel, Maria Neofytou, Skevi Kyriacou, Carolina Sismani, George Koumbaris and Philippos C. Patsalis 2018. MeDIP combined with in-solution targeted enrichment followed by NGS: Inter-individual methylation variability of fetal-specific biomarkers and their implementation in a proof of concept study for NIPT. PLoS ONE. 13 (6) e0199010. https://doi.org/10.1371/journal.pone.0199010

Predicting fetoplacental chromosomal mosaicism during non-invasive prenatal testing
Nathalie Brison, Maria Neofytou, Luc Dehaspe, Baran Bayindir, Kris Van Den Bogaert, Griet Van Buggenhout, Leila Dardour, Hilde Peeters, Hilde Van Esch, Annick Vogels, Thomy de Ravel, Eric Legius, Koen Devriendt and Joris R. Vermeesch 2018. Predicting fetoplacental chromosomal mosaicism during non-invasive prenatal testing. Prenatal Diagnosis. 38 (4), pp. 258-266. https://doi.org/10.1002/pd.5223

Cell-free DNA analysis of targeted genomic regions in maternal plasma for non-invasive prenatal testing of trisomy 21, trisomy 18, trisomy 13, and fetal sex
George Koumbaris, Elena Kypri, Kyriakos Tsangaras, Achilleas Achilleos, Petros Mina, Maria Neofytou, Voula Velissariou, Georgia Christopoulou, Ioannis Kallikas, Alicia González-Liñán, Egle Benusiene, Anna Latos-Bielenska, Pietryga Marek, Alfredo Santana, Nikoletta Nagy, Márta Széll, Piotr Laudanski, Elisavet A. Papageorgiou, Marios Ioannides and Philippos C. Patsalis 2016. Cell-free DNA analysis of targeted genomic regions in maternal plasma for non-invasive prenatal testing of trisomy 21, trisomy 18, trisomy 13, and fetal sex. Clinical Chemistry. 62 (6), pp. 848-855. https://doi.org/10.1373/clinchem.2015.252502

Permalink - https://westminsterresearch.westminster.ac.uk/item/wyy86/whole-genome-fetal-and-maternal-dna-methylation-analysis-using-medip-ngs-for-the-identification-of-differentially-methylated-regions


Share this

Usage statistics

8 total views
3 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.