| Abstract | In the aircraft cabin, passengers must share a confined environment with other passengers during boarding, flight, and disembarkation, which poses a risk for virus transmission and requires risk-appropriate mitigation strategies. Spacing between passenger groups during boarding and disembarkation reduces the risk of transmission, and optimized sequencing of passenger groups helps to significantly reduce boarding and disembarkation time. We considered passenger groups to be an important factor in overall operational efficiency. The basic idea of our concept is that the members of a group should not be separated, since they were already traveling as a group before entering the aircraft. However, to comply with COVID-19 regulations, different passenger groups should be separated spatially. For the particular challenge of disembarkation, we assume that passenger groups will be informed directly when they are allowed to leave for disembarkation. Today, cabin lighting could be used for this information process, but in a future digitally connected cabin, passengers could be informed directly via their personal devices. These devices could also be used to check the required distances between passengers. The implementation of optimized group sequencing has the potential to significantly reduce boarding and disembarkation times, taking into account COVID-19 constraints. |
|---|