Abstract | This paper continues a systematic approach to build natural deduction calculi and corresponding proof procedures for non-classical logics. Our attention is now paid to the framework of paraconsistent logics. These logics are used, in particular, for reasoning about systems where paradoxes do not lead to the `deductive explosion', i.e., where formulae of the type `A follows from false', for any A, are not valid. We formulate the natural deduction system for the logic PCont, explain its main concepts, define a proof searching technique and illustrate it by examples. The presentation is accompanied by demonstrating the correctness of these developments. |
---|