Kisspeptin prevention of Amyloid-β Peptide neurotoxicity in vitro

Milton, N.G.N., Chilumuri, A., Rocha-Ferreira, E., Nercessian, A.N. and Ashioti, M. 2012. Kisspeptin prevention of Amyloid-β Peptide neurotoxicity in vitro. ACS chemical neuroscience. 3 (9), pp. 706-719. https://doi.org/10.1021/cn300045d

TitleKisspeptin prevention of Amyloid-β Peptide neurotoxicity in vitro
AuthorsMilton, N.G.N., Chilumuri, A., Rocha-Ferreira, E., Nercessian, A.N. and Ashioti, M.
Abstract

Alzheimer’s disease (AD) onset is associated with changes in hypothalamic-pituitary–gonadal (HPG) function. The 54 amino acid kisspeptin (KP) peptide regulates the HPG axis and alters antioxidant enzyme expression. The Alzheimer’s amyloid-β (Aβ) is neurotoxic, and this action can be prevented by the antioxidant enzyme catalase. Here, we examined the effects of KP peptides on the neurotoxicity of Aβ, prion protein (PrP), and amylin (IAPP) peptides. The Aβ, PrP, and IAPP peptides stimulated the release of KP and KP 45–54. The KP peptides inhibited the neurotoxicity of Aβ, PrP, and IAPP peptides, via an action that could not be blocked by kisspeptin-receptor (GPR-54) or neuropeptide FF (NPFF) receptor antagonists. Knockdown of KiSS-1 gene, which encodes the KP peptides, in human neuronal SH-SY5Y cells with siRNA enhanced the toxicity of amyloid peptides, while KiSS-1 overexpression was neuroprotective. A comparison of the catalase and KP sequences identified a similarity between KP residues 42–51 and the region of catalase that binds Aβ. The KP peptides containing residues 45–50 bound Aβ, PrP, and IAPP, inhibited Congo red binding, and were neuroprotective. These results suggest that KP peptides are neuroprotective against Aβ, IAPP, and PrP peptides via a receptor independent action involving direct binding to the amyloid peptides.

JournalACS chemical neuroscience
Journal citation3 (9), pp. 706-719
ISSN1948-7193
Year2012
PublisherAmerican Chemical Society
Digital Object Identifier (DOI)https://doi.org/10.1021/cn300045d
Publication dates
Published2012

Related outputs

Late changes in blood-brain barrier permeability in a rat tMCAO model of stroke detected by gadolinium-enhanced MRI
Morgan, C.A., Mesquita, M., Ashioti, M., Beech, J.S., Williams, S.C.R., Irving, E. and Cash, D. 2020. Late changes in blood-brain barrier permeability in a rat tMCAO model of stroke detected by gadolinium-enhanced MRI. Neurological Research. 42 (10), pp. 844-852. https://doi.org/10.1080/01616412.2020.1786637

Curcumin: novel treatment in neonatal hypoxic-ischaemic brain injury
Rocha-Ferreira, E., Sisa, C., Bright, S., Fautz, T., Harris, M., Contreras Riquelme, I., Agwu, C., Kurulday, T., Mistry, B., Hill, D., Lange, S. and Hristova, M. 2019. Curcumin: novel treatment in neonatal hypoxic-ischaemic brain injury. Frontiers in Physiology. 10 1351. https://doi.org/10.3389/fphys.2019.01351

Peptidylarginine deiminases (PADs): novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates
Lange, S., Rocha-Ferreira, E., Thei, L., Mawjee, P., Thompson, P.R., Nicholas, A.P., Hristova, M., Peebles, D. and Raivich, G. 2014. Peptidylarginine deiminases (PADs): novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. Journal of Neurochemistry. 130 (4), pp. 555-562. https://doi.org/10.1111/jnc.12744

The Role of Infection and the TNF Family of Cytokines in Neonatal Hypoxic-Ischemic Brain Injury
Rocha-Ferreira, E., Francesch-Domenech, E., Thei, L., Rahim, A., Lange, S., Peebles, D., Hristova, M. and Raivich, G. 2014. The Role of Infection and the TNF Family of Cytokines in Neonatal Hypoxic-Ischemic Brain Injury. Reproductive Sciences. 21 (3 suppl), pp. 108A-109A. https://doi.org/10.1177/1933719114528275

The effects of catalase and kisspeptin overexpression on amyloid peptide toxicity
Chilumuri, A. 2014. The effects of catalase and kisspeptin overexpression on amyloid peptide toxicity. PhD thesis University of Westminster School of Life Sciences https://doi.org/10.34737/8yq40

Polymorphism of amyloid fibrils and their complexes with catalase
Milton, N.G.N. and Harris, J.R. 2014. Polymorphism of amyloid fibrils and their complexes with catalase. in: Uversky, V.N. and Lyubchenko, Y.L. (ed.) Bio-nanoimaging: protein misfolding and aggregation Boston Academic Press. pp. 255-262

Immunocytochemical staining of endogenous nuclear proteins with the HIS-1 anti-poly-histidine monoclonal antibody: a potential source of error in His-tagged protein detection
Chilumuri, A., Markiv, A. and Milton, N.G.N. 2014. Immunocytochemical staining of endogenous nuclear proteins with the HIS-1 anti-poly-histidine monoclonal antibody: a potential source of error in His-tagged protein detection. Acta Histochemica. 116 (6), pp. 1022-1028. https://doi.org/10.1016/j.acthis.2014.04.006

The neuroprotective role of catalase overexpression in SH-SY5Y cells against beta-amyloid and H2O2 toxicity
Chilumuri, A., Odell, M. and Milton, N.G.N. 2013. The neuroprotective role of catalase overexpression in SH-SY5Y cells against beta-amyloid and H2O2 toxicity. Alzheimer's & Dementia. 9 (4), p. P361.

Sulforaphane alters cerebral leukocyte endothelial cell interactions post global ischaemia reperfusion
Gillespie, S., Milton, N.G.N., Ashioti, M. and Gavins, F.N.E. 2013. Sulforaphane alters cerebral leukocyte endothelial cell interactions post global ischaemia reperfusion. FASEB Journal. 27, p. 687.18.

Inhibition of Protein Deimination Ameliorates Neuronal Damage Caused by Hypoxic Ischemic Insult in the Neonatal Brain
Lange, S., Rocha-Ferreira, E., Hristova, M., Thei, L., Mawjee, P., Thompson, P.R., Nicholas, T. and Raivich, G. 2013. Inhibition of Protein Deimination Ameliorates Neuronal Damage Caused by Hypoxic Ischemic Insult in the Neonatal Brain. British Neuroscience Association Abstracts. 22, pp. P1-B-071.

Kissorphin peptides for use in the treatment of Alzheimer's disease, Creutzfeldt-Jakob disease or diabetes mellitus
Milton, N.G.N. 2013. Kissorphin peptides for use in the treatment of Alzheimer's disease, Creutzfeldt-Jakob disease or diabetes mellitus.

Benzothiazole aniline-tetra(ethylene glycol) and 3-amino-1,2,4-triazole inhibit neuroprotection against amyloid peptides by catalase overexpression in vitro
Chilumuri, A., Odell, M. and Milton, N.G.N. 2013. Benzothiazole aniline-tetra(ethylene glycol) and 3-amino-1,2,4-triazole inhibit neuroprotection against amyloid peptides by catalase overexpression in vitro. ACS chemical neuroscience. 4 (11), pp. 1501-1512. https://doi.org/10.1021/cn400146a

The role of neurotransmitters in protection against amyloid-β toxicity by KiSS-1 overexpression in SH-SY5Y neurons
Chilumuri, A. and Milton, N.G.N. 2013. The role of neurotransmitters in protection against amyloid-β toxicity by KiSS-1 overexpression in SH-SY5Y neurons. ISRN Neuroscience. 2013 253210. https://doi.org/10.1155/2013/253210

Immunolocalization of kisspeptin associated with amyloid-β deposits in the pons of an Alzheimer’s disease patient
Chilumuri, A., Ashioti, M., Nercessian, A.N. and Milton, N.G.N. 2013. Immunolocalization of kisspeptin associated with amyloid-β deposits in the pons of an Alzheimer’s disease patient. Journal of Neurodegenerative Diseases. 2013 879710. https://doi.org/10.1155/2013/879710

Neuroprotective efficacy of the endogenous neuropeptide Urocortin in a oxygen-glucose deprivation model of transient cerebral ischaemia with reperfusion
Ashioti, M., Getting, S.J., Locke, I.C. and Milton, N.G.N. 2013. Neuroprotective efficacy of the endogenous neuropeptide Urocortin in a oxygen-glucose deprivation model of transient cerebral ischaemia with reperfusion. British Neuroscience Association 22nd Biennial Meeting. London 7th-10th April 2013

Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide
Milton, N.G.N. and Harris, J.R. 2013. Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide. Micron. 44, pp. 246-253. https://doi.org/10.1016/j.micron.2012.07.001

Kissorphin, a hexapeptide derivative of Kisspeptin, acts via Neuropeptide FF receptors to inhibit cyclic adenosine monophosphate release but has no Gonadotrophin-Releasing-Hormone releasing activity
Milton, N.G.N. 2012. Kissorphin, a hexapeptide derivative of Kisspeptin, acts via Neuropeptide FF receptors to inhibit cyclic adenosine monophosphate release but has no Gonadotrophin-Releasing-Hormone releasing activity. Endocrine Abstracts. 28, p. OC2.3.

In vitro activities of Kissorphin, a novel hexapeptide KiSS-1 derivative, in neuronal cells
Milton, N.G.N. 2012. In vitro activities of Kissorphin, a novel hexapeptide KiSS-1 derivative, in neuronal cells. Journal of Amino Acids. 2012 691463. https://doi.org/10.1155/2012/691463

Introduction and technical survey: protein aggregation and fibrillogenesis
Harris, J.R. and Milton, N.G.N. 2012. Introduction and technical survey: protein aggregation and fibrillogenesis. Subcellular Biochemistry. 65, pp. 3-25. https://doi.org/10.1007/978-94-007-5416-4_1

Kissorphin Peptides used in the treatment of Alzheimer’s Disease, Creutzfeldt Jakob Disease or Diabetes Mellitus P.
Milton, N.G.N. 2011. Kissorphin Peptides used in the treatment of Alzheimer’s Disease, Creutzfeldt Jakob Disease or Diabetes Mellitus P.

Kissorphin Peptides used in the treatment of Alzheimer’s Disease, Creutzfeldt Jakob Disease or Diabetes Mellitus P.
Milton, N.G.N. 2011. Kissorphin Peptides used in the treatment of Alzheimer’s Disease, Creutzfeldt Jakob Disease or Diabetes Mellitus P.

Human islet amyloid polypeptide fibril binding to catalase: a transmission electron microscopy and microplate study
Milton, N.G.N. and Harris, J.R. 2010. Human islet amyloid polypeptide fibril binding to catalase: a transmission electron microscopy and microplate study. ScientificWorldJournal. 10, pp. 879-893. https://doi.org/10.1100/tsw.2010.73

Cholesterol in Alzheimer's disease and other amyloidogenic disorders
Harris, J.R. and Milton, N.G.N. 2010. Cholesterol in Alzheimer's disease and other amyloidogenic disorders. Subcellular Biochemistry. 51, pp. 47-75. https://doi.org/10.1007/978-90-481-8622-8_2

Polymorphism of amyloid-ß fibrils and its effects on human erythrocyte catalase binding
Milton, N.G.N. and Harris, J.R. 2009. Polymorphism of amyloid-ß fibrils and its effects on human erythrocyte catalase binding. Micron. 40 (8), pp. 800-810. https://doi.org/10.1016/j.micron.2009.07.006

Neither in vivo MRI nor behavioural assessment indicate therapeutic efficacy for a novel 5HT1A agonist in rat models of ischaemic stroke
Ashioti, M., Beech, J.S., Lowe, A.S., Bernanos, M., McCreary, A., Modo, M.M. and Williams, S.C.R. 2009. Neither in vivo MRI nor behavioural assessment indicate therapeutic efficacy for a novel 5HT1A agonist in rat models of ischaemic stroke. BMC Neuroscience. 10 (82). https://doi.org/10.1186/1471-2202-10-82

Homocysteine inhibits hydrogen peroxide breakdown by catalase
Milton, N.G.N. 2008. Homocysteine inhibits hydrogen peroxide breakdown by catalase. Open Enzyme Inhibition Journal. 1, pp. 34-41. https://doi.org/10.2174/1874940200801010034

Interactions between amyloid-ß and enzymes
Milton, N.G.N. 2006. Interactions between amyloid-ß and enzymes. in: Harris, J.R., Graham, J. and Rickwood, D. (ed.) Cell biology protocols Chichester Wiley. pp. 359-363

Anti-sense peptides
Milton, N.G.N. 2006. Anti-sense peptides. in: Harris, J.R., Graham, J. and Rickwood, D. (ed.) Cell biology protocols Chichester Wiley. pp. 353-358

Amyloid-ß phosphorylation
Milton, N.G.N. 2006. Amyloid-ß phosphorylation. in: Harris, J.R., Graham, J. and Rickwood, D. (ed.) Cell biology protocols Chichester Wiley. pp. 364-368

Phosphorylated Amyloid-ß 1-43 protein and its use in the treatment of Alzheimer's disease
Milton, N.G.N. 2005. Phosphorylated Amyloid-ß 1-43 protein and its use in the treatment of Alzheimer's disease.

Phosphorylated amyloid-ß: the toxic intermediate in Alzheimer's disease neurodegeneration
Milton, N.G.N. 2005. Phosphorylated amyloid-ß: the toxic intermediate in Alzheimer's disease neurodegeneration. Subcellular Biochemistry. 38, pp. 381-402.

Peptides for use in the treatment of Alzheimer's disease
Milton, N.G.N. 2004. Peptides for use in the treatment of Alzheimer's disease.

Role of hydrogen peroxide in the aetiology of Alzheimer's disease: implications for treatment
Milton, N.G.N. 2004. Role of hydrogen peroxide in the aetiology of Alzheimer's disease: implications for treatment. Drugs & Aging. 21 (2), pp. 81-100.

Peptides for use in the treatment of Alzheimer's disease
Milton, N.G.N. 2003. Peptides for use in the treatment of Alzheimer's disease.

Anandamide and noladin ether prevent neurotoxicity of the human amyloid-ß peptide
Milton, N.G.N. 2002. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-ß peptide. Neuroscience Letters. 332 (2), pp. 127-130. https://doi.org/10.1016/S0304-3940(02)00936-9

The amyloid-β peptide binds to cyclin B1 and increases human cyclin-dependent kinase-1 activity
Milton, N.G.N. 2002. The amyloid-β peptide binds to cyclin B1 and increases human cyclin-dependent kinase-1 activity. Neuroscience Letters. 322 (2), pp. 131-133. https://doi.org/10.1016/S0304-3940(02)00081-2

Lipoprotein (a) does not participate in the early acute phase response to training or extreme physical activity and is unlikely to enhance any associated immediate cardiovascular risk
Byrne, D.J., Jagroop, I.A., Montgomery, H., Thomas, M., Mikhailidis, D.P., Milton, N.G.N. and Winder, A.F. 2002. Lipoprotein (a) does not participate in the early acute phase response to training or extreme physical activity and is unlikely to enhance any associated immediate cardiovascular risk. Journal of Clinical Pathology. 55 (4), pp. 280-285.

Peptides for use in the treatment of Alzheimer's disease
Milton, N.G.N. 2002. Peptides for use in the treatment of Alzheimer's disease.

Phosphorylation of amyloid-ß at the serine 26 residue by human cdc2 kinase
Milton, N.G.N. 2001. Phosphorylation of amyloid-ß at the serine 26 residue by human cdc2 kinase. NeuroReport. 12 (17), pp. 3839-3844.

Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer’s amyloid-ß peptide
Milton, N.G.N. 2001. Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer’s amyloid-ß peptide. NeuroToxicology. 72 (6), pp. 767-774. https://doi.org/10.1016/S0161-813X(01)00064-X

Identification of amyloid-ß binding sites using an antisense peptide approach
Milton, N.G.N., Mayor, N.P. and Rawlinson, J. 2001. Identification of amyloid-ß binding sites using an antisense peptide approach. NeuroReport. 12 (11), pp. 2561-2566.

Permalink - https://westminsterresearch.westminster.ac.uk/item/8z857/kisspeptin-prevention-of-amyloid-peptide-neurotoxicity-in-vitro


Share this

Usage statistics

214 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.