Title | Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues |
---|
Authors | Ovtchinnikov, E. |
---|
Abstract | This paper addresses the question of how to efficiently adapt the conjugate gradient (CG) method to the computation of several leftmost or rightmost eigenvalues and corresponding eigenvectors of Hermitian problems. A generic block CG algorithm instantiated by some available block CG algorithms is considered whereby the new approximate eigenpairs are computed by applying the Rayleigh-Ritz procedure in the trial subspace spanning current approximate eigenvectors and the search direction vectors, each of the latter being a linear combination of the respective gradient of the Rayleigh quotient and all search directions from the previous iteration. An approach related to the so-called Jacobi orthogonal complement correction equation is exploited in the local convergence analysis of this CG algorithm. Based on theoretical considerations, a new block conjugation scheme (a way to compute search directions) is suggested that enjoys a certain kind of optimality and has proved to be competitive in practical eigenvalue computation. |
---|
Keywords | Block conjugate gradients, convergence estimates, eigenvalue computation |
---|
Journal | SIAM Journal on Numerical Analysis |
---|
Journal citation | 46 (5), pp. 2593-2619 |
---|
ISSN | 0036-1429 |
---|
Year | May 2008 |
---|
Publisher | Society for Industrial and Applied Mathematics |
---|
Digital Object Identifier (DOI) | https://doi.org/10.1137/070688754 |
---|
Publication dates |
---|
Published | May 2008 |
---|