Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues

Ovtchinnikov, E. 2008. Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues. SIAM Journal on Numerical Analysis. 46 (5), pp. 2593-2619. https://doi.org/10.1137/070688754

TitleJacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues
AuthorsOvtchinnikov, E.
Abstract

This paper addresses the question of how to efficiently adapt the conjugate gradient (CG) method to the computation of several leftmost or rightmost eigenvalues and corresponding eigenvectors of Hermitian problems. A generic block CG algorithm instantiated by some available block CG algorithms is considered whereby the new approximate eigenpairs are computed by applying the Rayleigh-Ritz procedure in the trial subspace spanning current approximate eigenvectors and the search direction vectors, each of the latter being a linear combination of the respective gradient of the Rayleigh quotient and all search directions from the previous iteration. An approach related to the so-called Jacobi orthogonal complement correction equation is exploited in the local convergence analysis of this CG algorithm. Based on theoretical considerations, a new block conjugation scheme (a way to compute search directions) is suggested that enjoys a certain kind of optimality and has proved to be competitive in practical eigenvalue computation.

KeywordsBlock conjugate gradients, convergence estimates, eigenvalue computation
JournalSIAM Journal on Numerical Analysis
Journal citation46 (5), pp. 2593-2619
ISSN0036-1429
YearMay 2008
PublisherSociety for Industrial and Applied Mathematics
Digital Object Identifier (DOI)https://doi.org/10.1137/070688754
Publication dates
PublishedMay 2008

Related outputs

Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
Ovtchinnikov, E. 2008. Computing several eigenpairs of Hermitian problems by conjugate gradient iterations. Journal of Computational Physics. 227 (22), pp. 9477-9497. https://doi.org/10.1016/j.jcp.2008.06.038

Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue
Ovtchinnikov, E. 2008. Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue. SIAM Journal on Numerical Analysis. 46 (5), pp. 2567-2592. https://doi.org/10.1137/070688742

Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc
Knyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E. 2007. Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing. 29 (5), pp. 2224-2239. https://doi.org/10.1137/060661624

Cluster robustness of preconditioned gradient subspace iteration eigensolvers
Ovtchinnikov, E. 2006. Cluster robustness of preconditioned gradient subspace iteration eigensolvers. Linear Algebra and its Applications. 415 (1), pp. 140-166. https://doi.org/10.1016/j.laa.2005.06.039

Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues. Linear Algebra and its Applications. 415 (1), pp. 188-209. https://doi.org/10.1016/j.laa.2005.06.041

Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces. Linear Algebra and its Applications. 415 (1), pp. 167-187. https://doi.org/10.1016/j.laa.2005.06.040

Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems
Ovtchinnikov, E. 2006. Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems. SIAM Journal on Numerical Analysis. 43 (6), pp. 2668-2689. https://doi.org/10.1137/040620643

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration. SIAM Journal on Numerical Analysis. 41 (1), pp. 272-286. https://doi.org/10.1137/S0036142902411768

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect. SIAM Journal on Numerical Analysis. 41 (1), pp. 258-271. https://doi.org/10.1137/S0036142902411756

On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates
Xanthis, L. and Ovtchinnikov, E. 2002. On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates. HERMIS: the International Journal of Computer Mathematics and its Applications. 3, pp. 65-90.

Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates
Ovtchinnikov, E. and Xanthis, L. 2001. Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 457 (2006), pp. 441-451. https://doi.org/10.1098/rspa.2000.0674

Permalink - https://westminsterresearch.westminster.ac.uk/item/9129x/jacobi-correction-equation-line-search-and-conjugate-gradients-in-hermitian-eigenvalue-computation-ii-computing-several-extreme-eigenvalues


Share this

Usage statistics

89 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.