Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect

Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect. SIAM Journal on Numerical Analysis. 41 (1), pp. 258-271. https://doi.org/10.1137/S0036142902411756

TitleConvergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect
AuthorsOvtchinnikov, E.
Abstract

The generalized Davidson (GD) method can be viewed as a generalization of the preconditioned steepest descent (PSD) method for solving symmetric eigenvalue problems. There are two aspects of this generalization. The most obvious one is that in the GD method the new approximation is sought in a larger subspace, namely the one that spans all the previous approximate eigenvectors, in addition to the current one and the preconditioned residual thereof. Another aspect relates to the preconditioning. Most of the available results for the PSD method are associated with the same view on preconditioning as in the case of linear systems. Consequently, they fail to detect the superlinear convergence for certain "ideal" preconditioners, such as the one corresponding to the "exact" version of the Jacobi-Davidson method-one of the most familiar instances of the GD method. Focusing on the preconditioning aspect, this paper advocates an alternative approach to measuring the quality of preconditioning for eigenvalue problems and presents corresponding non-asymptotic convergence estimates for the GD method in general and Jacobi-Davidson method in particular that correctly detect known

JournalSIAM Journal on Numerical Analysis
Journal citation41 (1), pp. 258-271
ISSN0036-1429
Year2003
Digital Object Identifier (DOI)https://doi.org/10.1137/S0036142902411756
Publication dates
Published2003

Related outputs

Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
Ovtchinnikov, E. 2008. Computing several eigenpairs of Hermitian problems by conjugate gradient iterations. Journal of Computational Physics. 227 (22), pp. 9477-9497. https://doi.org/10.1016/j.jcp.2008.06.038

Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues
Ovtchinnikov, E. 2008. Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues. SIAM Journal on Numerical Analysis. 46 (5), pp. 2593-2619. https://doi.org/10.1137/070688754

Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue
Ovtchinnikov, E. 2008. Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue. SIAM Journal on Numerical Analysis. 46 (5), pp. 2567-2592. https://doi.org/10.1137/070688742

Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc
Knyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E. 2007. Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing. 29 (5), pp. 2224-2239. https://doi.org/10.1137/060661624

Cluster robustness of preconditioned gradient subspace iteration eigensolvers
Ovtchinnikov, E. 2006. Cluster robustness of preconditioned gradient subspace iteration eigensolvers. Linear Algebra and its Applications. 415 (1), pp. 140-166. https://doi.org/10.1016/j.laa.2005.06.039

Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues. Linear Algebra and its Applications. 415 (1), pp. 188-209. https://doi.org/10.1016/j.laa.2005.06.041

Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces. Linear Algebra and its Applications. 415 (1), pp. 167-187. https://doi.org/10.1016/j.laa.2005.06.040

Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems
Ovtchinnikov, E. 2006. Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems. SIAM Journal on Numerical Analysis. 43 (6), pp. 2668-2689. https://doi.org/10.1137/040620643

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration. SIAM Journal on Numerical Analysis. 41 (1), pp. 272-286. https://doi.org/10.1137/S0036142902411768

On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates
Xanthis, L. and Ovtchinnikov, E. 2002. On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates. HERMIS: the International Journal of Computer Mathematics and its Applications. 3, pp. 65-90.

Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates
Ovtchinnikov, E. and Xanthis, L. 2001. Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 457 (2006), pp. 441-451. https://doi.org/10.1098/rspa.2000.0674

Permalink - https://westminsterresearch.westminster.ac.uk/item/938zx/convergence-estimates-for-the-generalized-davidson-method-for-symmetric-eigenvalue-problems-i-the-preconditioning-aspect


Share this

Usage statistics

99 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.