Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc

Knyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E. 2007. Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing. 29 (5), pp. 2224-2239. https://doi.org/10.1137/060661624

TitleBlock locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc
AuthorsKnyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E.
Abstract

We describe our software package Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) recently publicly released. BLOPEX is available as a stand-alone serial library, as an external package to PETSc (Portable, Extensible Toolkit for Scientific Computation, a general purpose suite of tools developed by Argonne National Laboratory for the scalable solution of partial differential equations and related problems), and is also built into hypre (High Performance Preconditioners, a scalable linear solvers package developed by Lawrence Livermore National Laboratory). The present BLOPEX release includes only one solver—the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems. hypre provides users with advanced high-quality parallel multigrid preconditioners for linear systems. With BLOPEX, the same preconditioners can now be efficiently used for symmetric eigenvalue problems. PETSc facilitates the integration of independently developed application modules, with strict attention to component interoperability, and makes BLOPEX extremely easy to compile and use with preconditioners that are available via PETSc. We present the LOBPCG algorithm in BLOPEX for hypre and PETSc. We demonstrate numerically the scalability of BLOPEX by testing it on a number of distributed and shared memory parallel systems, including a Beowulf system, SUN Fire 880, an AMD dual-core Opteron workstation, and IBM BlueGene/L supercomputer, using PETSc domain decomposition and hypre multigrid preconditioning. We test BLOPEX on a model problem, the standard 7-point finite-difference approximation of the 3-D Laplacian, with the problem size in the range of $10^5$-$10^8$.

KeywordsBLOPEX, Beowulf, BlueGene, LOBPCG, PETSc, conjugate gradient, domain decomposition, eigenvalue, hypre, iterative method, multigrid, parallel computing, preconditioning
JournalSIAM Journal on Scientific Computing
Journal citation29 (5), pp. 2224-2239
ISSN1064-8275
YearSep 2007
PublisherSociety for Industrial and Applied Mathematics
Digital Object Identifier (DOI)https://doi.org/10.1137/060661624
Publication dates
PublishedSep 2007

Related outputs

Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
Ovtchinnikov, E. 2008. Computing several eigenpairs of Hermitian problems by conjugate gradient iterations. Journal of Computational Physics. 227 (22), pp. 9477-9497. https://doi.org/10.1016/j.jcp.2008.06.038

Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues
Ovtchinnikov, E. 2008. Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues. SIAM Journal on Numerical Analysis. 46 (5), pp. 2593-2619. https://doi.org/10.1137/070688754

Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue
Ovtchinnikov, E. 2008. Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue. SIAM Journal on Numerical Analysis. 46 (5), pp. 2567-2592. https://doi.org/10.1137/070688742

Cluster robustness of preconditioned gradient subspace iteration eigensolvers
Ovtchinnikov, E. 2006. Cluster robustness of preconditioned gradient subspace iteration eigensolvers. Linear Algebra and its Applications. 415 (1), pp. 140-166. https://doi.org/10.1016/j.laa.2005.06.039

Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues. Linear Algebra and its Applications. 415 (1), pp. 188-209. https://doi.org/10.1016/j.laa.2005.06.041

Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces. Linear Algebra and its Applications. 415 (1), pp. 167-187. https://doi.org/10.1016/j.laa.2005.06.040

Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems
Ovtchinnikov, E. 2006. Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems. SIAM Journal on Numerical Analysis. 43 (6), pp. 2668-2689. https://doi.org/10.1137/040620643

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration. SIAM Journal on Numerical Analysis. 41 (1), pp. 272-286. https://doi.org/10.1137/S0036142902411768

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect. SIAM Journal on Numerical Analysis. 41 (1), pp. 258-271. https://doi.org/10.1137/S0036142902411756

On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates
Xanthis, L. and Ovtchinnikov, E. 2002. On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates. HERMIS: the International Journal of Computer Mathematics and its Applications. 3, pp. 65-90.

Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates
Ovtchinnikov, E. and Xanthis, L. 2001. Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 457 (2006), pp. 441-451. https://doi.org/10.1098/rspa.2000.0674

Permalink - https://westminsterresearch.westminster.ac.uk/item/919y7/block-locally-optimal-preconditioned-eigenvalue-xolvers-blopex-in-hypre-and-petsc


Share this

Usage statistics

109 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.