Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces

Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces. Linear Algebra and its Applications. 415 (1), pp. 167-187. https://doi.org/10.1016/j.laa.2005.06.040

TitleCluster robust error estimates for the Rayleigh-Ritz approximation I: Estimates for invariant subspaces
AuthorsOvtchinnikov, E.
Abstract

This is the first part of a paper that deals with error estimates for the Rayleigh-Ritz approximations to the spectrum and invariant subspaces of a bounded Hermitian operator in a Hilbert or Euclidean space. This part addresses estimates for the angles between the invariant subspaces and their approximations via the corresponding best approximation errors and residuals and, for invariant subspaces corresponding to parts of the discrete spectrum, via eigenvalue errors. The paper's major concern is to ensure that the estimates in question are accurate and 'cluster robust', i.e. are not adversely affected by the presence of clustered, i.e. closely situated eigenvalues in the spectrum. Available estimates of such kind are reviewed and new estimates are derived. The paper's main new results introduce estimates for invariant subspaces in which the operator may have clustered eigenvalues whereby not only the distances between eigenvalues in the cluster are not present but also the distances between the cluster and the rest of the spectrum appear in asymptotically insignificant terms only.

KeywordsSelf-adjoint eigenvalue problem, Rayleigh–Ritz method, A priori and a posteriori error estimates, Clustered eigenvalues, Invariant subspaces
JournalLinear Algebra and its Applications
Journal citation415 (1), pp. 167-187
ISSN0024-3795
YearMay 2006
Digital Object Identifier (DOI)https://doi.org/10.1016/j.laa.2005.06.040
Publication dates
PublishedMay 2006

Related outputs

Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
Ovtchinnikov, E. 2008. Computing several eigenpairs of Hermitian problems by conjugate gradient iterations. Journal of Computational Physics. 227 (22), pp. 9477-9497. https://doi.org/10.1016/j.jcp.2008.06.038

Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues
Ovtchinnikov, E. 2008. Jacobi correction equation, line search, and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme eigenvalues. SIAM Journal on Numerical Analysis. 46 (5), pp. 2593-2619. https://doi.org/10.1137/070688754

Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue
Ovtchinnikov, E. 2008. Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme eigenvalue. SIAM Journal on Numerical Analysis. 46 (5), pp. 2567-2592. https://doi.org/10.1137/070688742

Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc
Knyazev, A.V., Argentati, M.E., Lashuk, I. and Ovtchinnikov, E. 2007. Block locally optimal preconditioned eigenvalue Xolvers (BLOPEX) in Hypre and PETSc. SIAM Journal on Scientific Computing. 29 (5), pp. 2224-2239. https://doi.org/10.1137/060661624

Cluster robustness of preconditioned gradient subspace iteration eigensolvers
Ovtchinnikov, E. 2006. Cluster robustness of preconditioned gradient subspace iteration eigensolvers. Linear Algebra and its Applications. 415 (1), pp. 140-166. https://doi.org/10.1016/j.laa.2005.06.039

Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues
Ovtchinnikov, E. 2006. Cluster robust error estimates for the Rayleigh-Ritz approximation II: Estimates for eigenvalues. Linear Algebra and its Applications. 415 (1), pp. 188-209. https://doi.org/10.1016/j.laa.2005.06.041

Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems
Ovtchinnikov, E. 2006. Sharp convergence estimates for the preconditioned steepest descent method for hermitian eigenvalue problems. SIAM Journal on Numerical Analysis. 43 (6), pp. 2668-2689. https://doi.org/10.1137/040620643

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems II: the subspace acceleration. SIAM Journal on Numerical Analysis. 41 (1), pp. 272-286. https://doi.org/10.1137/S0036142902411768

Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect
Ovtchinnikov, E. 2003. Convergence estimates for the generalized davidson method for symmetric eigenvalue problems I: the preconditioning aspect. SIAM Journal on Numerical Analysis. 41 (1), pp. 258-271. https://doi.org/10.1137/S0036142902411756

On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates
Xanthis, L. and Ovtchinnikov, E. 2002. On the opodeictics of successive eigenvalue relaxation for large-scale eigenvalue problems: proofs of convergence estimates. HERMIS: the International Journal of Computer Mathematics and its Applications. 3, pp. 65-90.

Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates
Ovtchinnikov, E. and Xanthis, L. 2001. Successive eigenvalue relaxation: a new method for the generalized eigenvalue problem and convergence estimates. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 457 (2006), pp. 441-451. https://doi.org/10.1098/rspa.2000.0674

Permalink - https://westminsterresearch.westminster.ac.uk/item/922w3/cluster-robust-error-estimates-for-the-rayleigh-ritz-approximation-i-estimates-for-invariant-subspaces


Share this

Usage statistics

116 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.