Molecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation

Dalby, A.R. and Shamsir, M. 2015. Molecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation. F1000Research. 4 (589). doi:10.12688/f1000research.6831.1

TitleMolecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation
AuthorsDalby, A.R. and Shamsir, M.
Abstract

Molecular dynamics simulations have been used extensively to model the folding and unfolding of proteins. The rates of folding and unfolding should follow the Arrhenius equation over a limited range of temperatures. This study shows that molecular dynamic simulations of the unfolding of crambin between 500K and 560K do follow the Arrhenius equation. They also show that while there is a large amount of variation between the simulations the average values for the rate show a very high degree of correlation.

JournalF1000Research
Journal citation4 (589)
ISSN2046-1402
Year2015
PublisherF1000 Research Ltd
Publisher's version10.12688_f1000research.6831.1_20151102.pdf
Digital Object Identifier (DOI)doi:10.12688/f1000research.6831.1
Publication dates
Published20 Aug 2015
LicenseCC BY 4.0

Related outputs

Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events
Dalby, A.R. 2016. Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events. F1000Research . 5, p. 2463. doi:10.12688/f1000research.9261.1

The European and Japanese outbreaks of H5N8 derive from a single source population providing evidence for the dispersal along the long distance bird migratory flyways
Dalby, A.R. and Iqbal, M. 2015. The European and Japanese outbreaks of H5N8 derive from a single source population providing evidence for the dispersal along the long distance bird migratory flyways. PeerJ. 3. doi:10.7717/peerj.934

A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin
Dalby, A.R. and Iqbal, M. 2014. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin. PeerJ. 2. doi:10.7717/peerj.655

The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma
Dalby, A.R. and Bailey, I. 2014. The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma. Microarrays. 3 (4), pp. 212-225. doi:10.3390/microarrays3040212

Analysis of gene expression data from non-small cell lung carcinoma cell lines reveals distinct sub-classes from those identified at the phenotype level
Dalby, A.R., Emam, I. and Franke, R. 2012. Analysis of gene expression data from non-small cell lung carcinoma cell lines reveals distinct sub-classes from those identified at the phenotype level. PLoS ONE. 7 (11), p. e50253. doi:10.1371/journal.pone.0050253

Identification of Schistosoma mansoni microRNAs
Simões, M.C., Lee, J., Djikeng, A., Cerqueira, G.C., Zerlotini, A., da Silva-Pereira, R.A., Dalby, A.R., LoVerde, P., El-Sayed, N.M. and Oliveira, G. 2011. Identification of Schistosoma mansoni microRNAs. BMC Genomics. 12 (47), pp. 1-17. doi:10.1186/1471-2164-12-47

Developing stochastic models for spatial inference: bacterial chemotaxis
Yu, Y.D., Choi, Y., Teo, Y.Y. and Dalby, A.R. 2010. Developing stochastic models for spatial inference: bacterial chemotaxis. PLoS ONE. 5 (5), p. e10464. doi:10.1371/journal.pone.0010464

A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection
Dalby, A.R. 2009. A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection. PLoS ONE. 4 (7), p. e6231. doi:10.1371/journal.pone.0006231

Permalink - https://westminsterresearch.westminster.ac.uk/item/98x91/molecular-dynamics-simulations-of-the-temperature-induced-unfolding-of-crambin-follow-the-arrhenius-equation


Share this
Tweet
Email