Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein.

Shamsir, M.S. and Dalby, A.R. 2007. Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein. Biophysical Journal. 92 (6), pp. P2080-2089. https://doi.org/10.1529/biophysj.106.092320

TitleBeta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein.
TypeJournal article
AuthorsShamsir, M.S. and Dalby, A.R.
Abstract

Previous molecular dynamic simulations have reported elongation of the existing β-sheet in prion proteins. Detailed examination has shown that these elongations do not extend beyond the proline residues flanking these β-sheets. In addition, proline has also been suggested to possess a possible structural role in preserving protein interaction sites by preventing invasion of neighboring secondary structures. In this work, we have studied the possible structural role of the flanking proline residues by simulating mutant structures with alternate substitution of the proline residues with valine. Simulations showed a directional inhibition of elongation, with the elongation progressing in the direction of valine including evident inhibition of elongation by existing proline residues. This suggests that the flanking proline residues in prion proteins may have a containment role and would confine the β-sheet within a specific length.

JournalBiophysical Journal
Journal citation92 (6), pp. P2080-2089
ISSN0006-3495
Year2007
PublisherCell Press
Digital Object Identifier (DOI)https://doi.org/10.1529/biophysj.106.092320
PubMed ID17172295
Web address (URL)http://europepmc.org/abstract/med/17172295
Publication dates
Published15 Mar 2007

Related outputs

microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An <i>in Vitro</i> Model
Arisan, Elif Damla, Dart, D. Alwyn, Grant, Guy H., Dalby, A.R., Kancagi, Derya Dilek, Turan, Raife Dilek, Yurtsever, Bulut, Karakus, Gozde Sir, Ovali, Ercument, Lange, Sigrun and Uysal-Onganer, P. 2022. microRNA 1307 Is a Potential Target for SARS-CoV-2 Infection: An <i>in Vitro</i> Model. ACS Omega. 7 (42), pp. 38003-38014. https://doi.org/10.1021/acsomega.2c05245

Bacterial Adaptation to Venom in Snakes and Arachnida
Esmaeilishirazifard, Elham, Usher, Louise, Trim, Carol, Denise, Hubert, Sangal, V., Tyson, G., Barlow, Axel, Redway, Keith F, Taylor, John D, Kremyda-Vlachou, Myrto, Davies, Sam, Loftus, Teresa D, Lock, Mikaella M G, Wright, Kstir, Dalby, Andrew, Snyder, L., Wuster, Wolfgang, Trim, Steve and Moschos, S. 2022. Bacterial Adaptation to Venom in Snakes and Arachnida. Microbiology Spectrum. 10 (3) e02408-21. https://doi.org/10.1128/spectrum.02408-21

Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events
Dalby, A.R. 2016. Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events. F1000Research . 5, p. 2463 2463. https://doi.org/10.12688/f1000research.9261.1

Molecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation
Dalby, A.R. and Shamsir, M. 2015. Molecular dynamics simulations of the temperature-induced unfolding of crambin follow the Arrhenius equation. F1000Research. 4 (589). https://doi.org/10.12688/f1000research.6831.1

The European and Japanese outbreaks of H5N8 derive from a single source population providing evidence for the dispersal along the long distance bird migratory flyways
Dalby, A.R. and Iqbal, M. 2015. The European and Japanese outbreaks of H5N8 derive from a single source population providing evidence for the dispersal along the long distance bird migratory flyways. PeerJ. 3 e934. https://doi.org/10.7717/peerj.934

A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin
Dalby, A.R. and Iqbal, M. 2014. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin. PeerJ. 2 e655. https://doi.org/10.7717/peerj.655

The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma
Dalby, A.R. and Bailey, I. 2014. The Robustness of Pathway Analysis in Identifying Potential Drug Targets in Non-Small Cell Lung Carcinoma. Microarrays. 3 (4), pp. 212-225. https://doi.org/10.3390/microarrays3040212

Analysis of gene expression data from non-small celllung carcinoma cell lines reveals distinct sub-classesfrom those identified at the phenotype level
Dalby, A.R., Emam, I. and Franke, R. 2012. Analysis of gene expression data from non-small celllung carcinoma cell lines reveals distinct sub-classesfrom those identified at the phenotype level. PLoS ONE. 7 (11) e50253. https://doi.org/10.1371/journal.pone.0050253

Identification of Schistosoma mansoni microRNAs
Simões, M.C., Lee, J., Djikeng, A., Cerqueira, G.C., Zerlotini, A., da Silva-Pereira, R.A., Dalby, A.R., LoVerde, P., El-Sayed, N.M. and Oliveira, G. 2011. Identification of Schistosoma mansoni microRNAs. BMC Genomics. 12 (47), pp. 1-17. https://doi.org/10.1186/1471-2164-12-47

Developing stochastic models for spatial inference: bacterial chemotaxis
Yu, Y.D., Choi, Y., Teo, Y.Y. and Dalby, A.R. 2010. Developing stochastic models for spatial inference: bacterial chemotaxis. PLoS ONE. 5 (5) e10464. https://doi.org/10.1371/journal.pone.0010464

A comparative proteomic analysis of the simple aminoacid repeat distributions in Plasmodia reveals lineagespecific amino acid selection
Dalby, A.R. 2009. A comparative proteomic analysis of the simple aminoacid repeat distributions in Plasmodia reveals lineagespecific amino acid selection. PLoS ONE. 4 (7) e6231. https://doi.org/10.1371/journal.pone.0006231

COPASAAR--a database for proteomic analysis of single amino acid repeats.
Depledge, D.P. and Dalby, A.R. 2005. COPASAAR--a database for proteomic analysis of single amino acid repeats. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-6-196

Predicting the phosphorylation sites using hidden Markov models and machine learning methods.
Senawongse, P., Dalby, A.R. and Yang, Z.R. 2005. Predicting the phosphorylation sites using hidden Markov models and machine learning methods. Journal of Chemical Information and Modeling. 45 (4), pp. 1147-1152. https://doi.org/10.1021/ci050047+

Evaluation of mutual information and genetic programming for feature selection in QSAR.
Venkatraman, V., Dalby, A.R. and Yang, Z.R. 2004. Evaluation of mutual information and genetic programming for feature selection in QSAR. Journal of Chemical Information and Computer Sciences. 44 (5), pp. 1686-1692. https://doi.org/10.1021/ci049933v

Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms.
Berry, E.A., Dalby, A.R. and Yang, Z.R. 2004. Reduced bio basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms. Computational Biology and Chemistry. 28 (1), pp. 75-85. https://doi.org/10.1016/j.compbiolchem.2003.11.005

Constructing an enzyme-centric view of metabolism.
Horne, A.B., Hodgman, T.C., Spence, H.D. and Dalby, A.R. 2004. Constructing an enzyme-centric view of metabolism. Bioinformatics. 20 (13), pp. 2050-2055. https://doi.org/10.1093/bioinformatics/bth199

Mining HIV protease cleavage data using genetic programming with a sum-product function.
Yang, Z.R., Dalby, A.R. and Qiu, J. 2004. Mining HIV protease cleavage data using genetic programming with a sum-product function. Bioinformatics. 20 (18), pp. 3398-3405. https://doi.org/10.1093/bioinformatics/bth414

The structure of human liver fructose-1,6-bisphosphate aldolase
Dalby, A.R., Tolan, D.R. and Littlechild, J.A. 2002. The structure of human liver fructose-1,6-bisphosphate aldolase. Acta Crystallographica Section D. D57, pp. 1526-1533. https://doi.org/10.1107/s0907444901012719

Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes.
Littlechild, J., Garcia-Rodriguez, E., Dalby, A.R. and Isupov, M. 2002. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes. Journal of Molecular Recognition. 15 (5), pp. 291-296. https://doi.org/10.1002/jmr.590

Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
Isupov, M.N., Dalby, A.R., Brindley, A.A., Izumi, Y., Tanabe, T., Murshudov, G.N. and Littlechild, J.A. 2000. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis. Journal of Molecular Biology. 299 (4), pp. 1035-1049. https://doi.org/10.1006/jmbi.2000.3806

Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications.
Dalby, A.R., Dauter, Z. and Littlechild, J.A. 1999. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. Protein Science. 8 (2), pp. 291-297. https://doi.org/10.1110/ps.8.2.291

Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A.
Crowhurst, G.S., Dalby, A.R., Isupov, M.N., Campbell, J.W. and Littlechild, J.A. 1999. Structure of a phosphoglycerate mutase:3-phosphoglyceric acid complex at 1.7 A. Acta Crystallographica Section D. D55, pp. 1822-1826. https://doi.org/10.1107/s0907444999009944

Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis.
Brindley, A.A., Dalby, A.R., Isupov, M.N. and Littlechild, J.A. 1998. Preliminary X-ray analysis of a new crystal form of the vanadium-dependent bromoperoxidase from Corallina officinalis. Acta Crystallographica Section D: Structural Biology. D54 (Pt 3), pp. 454-457. https://doi.org/10.1107/s0907444997014558

Studies with type I aldolase to understand fructose intolerance and combat parasitic disease.
Dalby, A.R. and Littlechild, J.A. 1996. Studies with type I aldolase to understand fructose intolerance and combat parasitic disease. Journal of Pharmacy and Pharmacology. 48 (2), pp. 214-217. https://doi.org/10.1111/j.2042-7158.1996.tb07126.x

Permalink - https://westminsterresearch.westminster.ac.uk/item/vw74z/beta-sheet-containment-by-flanking-prolines-molecular-dynamic-simulations-of-the-inhibition-of-beta-sheet-elongation-by-proline-residues-in-human-prion-protein


Share this

Usage statistics

82 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.