Abstract | Molecular identification of microorganisms associated with submerged cassava fermentation was carried out and isolates of lactic acid bacteria (LAB) were examined for antimicrobial activity, including ability to produce antimicrobial peptides as a first step to define starter cultures for controlled cassava fermentations. A total of 75 isolates, including 41 LAB, 31 aerobic bacteria (AB) and three anaerobic bacteria were isolated from unfermented and fermenting cassava roots, cassava leaves and fermented cassava dough and identified by a combination of phenotypic tests and sequencing of 16S rRNA, rpoA, rpoB and pheS genes. Microbial diversity at interspecies and intraspecies level was screened by, respectively, PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR) and repetitive sequence based PCR (rep-PCR). Antimicrobial activity of LAB cultures and supernatants against indicator bacteria; Escherichia coli, Salmonella enterica serotype Typhimurium (S. Typhimurium), Bacillus cereus and Staphylococcus aureus was studied using agar diffusion tests. Furthermore, inactivation of indicator bacteria was investigated in both liquid medium and during controlled cassava fermentation. Results revealed a diversity of bacterial genera, species and subspecies associated with submerged cassava fermentation. DNA sequencing enabled identification of LAB isolates as Lactobacillus plantarum, Weissella confusa, Weissella paramesenteroides, Lactobacillus rhamnosus, Lactobacillus hilgardii, Lactobacillus paracasei, Leuconostoc mesenteroides, Enterococcus faecium, Enterococcus casseliflavus, and Pediococcus acidilactici. Lactobacillus spp. were the predominant LAB and were present in all cassava samples studied. Aerobic bacteria were predominantly Bacillus spp., including Bacillus subtilis, Bacillus amyloliquefaciens and B. cereus. Other species identified included Staphylococcus pasteuri and Clostridium beijerinkii. Cells, supernatants and cell free supernatants (CFS) of selected LAB isolates were able to inhibit both Gram positive and Gram negative pathogenic bacteria. LAB isolates inactivated all indicator organisms during controlled cassava fermentations, with a 4–6 log reduction after 48 h fermentation. The antimicrobial effect of the LAB was attributed to acid production. |
---|