Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms

Chen, E., Schneider, R.K., Breyfogle, L.J., Rosen, E.A., Poveromo, L., Elf, S., Ko, A., Brumme, K., Levine, R., Ebert, B.L. and Mullally, A. 2015. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms. Blood. 125, pp. 327-335. https://doi.org/10.1182/blood-2014-04-567024

TitleDistinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms
TypeJournal article
AuthorsChen, E., Schneider, R.K., Breyfogle, L.J., Rosen, E.A., Poveromo, L., Elf, S., Ko, A., Brumme, K., Levine, R., Ebert, B.L. and Mullally, A.
Abstract

Signaling mutations (eg, JAK2V617F) and mutations in genes involved in epigenetic regulation (eg, TET2) are the most common cooccurring classes of mutations in myeloproliferative neoplasms (MPNs). Clinical correlative studies have demonstrated that TET2 mutations are enriched in more advanced phases of MPNs such as myelofibrosis and leukemic transformation, suggesting that they may cooperate with JAK2V617F to promote disease progression. To dissect the effects of concomitant Jak2V617F expression and Tet2 loss within distinct hematopoietic compartments in vivo, we generated Jak2V617F/Tet2 compound mutant genetic mice. We found that the combination of Jak2V617F expression and Tet2 loss resulted in a more florid MPN phenotype than that seen with either allele alone. Concordant with this, we found that Tet2 deletion conferred a strong functional competitive advantage to Jak2V617F-mutant hematopoietic stem cells (HSCs). Transcriptional profiling revealed that both Jak2V617F expression and Tet2 loss were associated with distinct and nonoverlapping gene expression signatures within the HSC compartment. In aggregate, our findings indicate that Tet2 loss drives clonal dominance in HSCs, and Jak2V617F expression causes expansion of downstream precursor cell populations, resulting in disease progression through combinatorial effects. This work provides insight into the functional consequences of JAK2V617F-TET2 comutation in MPNs, particularly as it pertains to HSCs.

JournalBlood
Journal citation125, pp. 327-335
ISSN0006-4971
Year2015
PublisherAmerican Society of Hematology
Digital Object Identifier (DOI)https://doi.org/10.1182/blood-2014-04-567024
Publication dates
Published08 Jan 2015

Related outputs

Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis
Rivera, J.F., Baral, A.J., Nadat, F., Boyd, G., Smyth, R., Patel, H., Burman, E.L., Alameer, G., Boxall, S.A., Jackson, B.R., Baxter, E.J., Laslo, P., Green, A.R., Kent, D.G., Mullally, A. and Chen, E. 2021. Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Advances. 5 (7), pp. 1922-1932. https://doi.org/10.1182/bloodadvances.2020002402

Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML
Tothova, Z., Valton, A., Gorelov, R., Vallurupalli, M., Krill-Burger, J.M., Holmes, A., Landers, C.C., Haydu, J.E., Malolepsza, E., Hartigan, C.R., Donahue, M., Popova, K.D., Koochaki, S.H.J., Venev, S.V., Rivera, J.F., Chen, E., Lage, K., Schenone, M., D'Andrea, A.D., Carr, S.A., Morgan, E.A., Dekker, J. and Ebert, B.L. 2021. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight. 6 (3) e142149. https://doi.org/10.1172/jci.insight.142149

Mechanism of completion of peptidyltransferase centre assembly in eukaryotes
Kargas, V., Castro-Hartmann, P., Escudero-Urquijo, N., Dent, K., Hilcenko, C., Sailer, C., Zisser, G., Marques-Carvalho, M.J., Pellegrino, S., Wawiorka, L., Freund, S.M., Wagstaff, J.L., Andreeva, A., Faille, A., Chen, E., Stengel, F., Bergler, H. and Warren, A.J. 2019. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. eLife. 8, p. e44904 e44904. https://doi.org/10.7554/eLife.44904

Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN
Elf, S., Abdelfattah, N.S., Baral, A.J., Beeson, D., Rivera, J.F., Ko, A., Florescu, N., Birrane, G., Chen, E. and Mullally, A. 2018. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 131 (7), pp. 782-786. https://doi.org/10.1182/blood-2017-08-800896

STAT1 activation in association with JAK2 exon 12 mutations
Godfrey, A.L., Chen, E., Massie, C.E., Silber, Y., Pagano, F., Bellosillo, B., Guglielmelli, P., Harrison, C.N., Reilly, J.T., Stegelmann, F., Bijou, F., Lippert, E., Boiron, J.M., Dohner, K., Vannucchi, A.M., Besses, C. and Green, A.R. 2016. STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 101, pp. e15-e19. https://doi.org/10.3324/haematol.2015.128546

Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9
Schneider, R.K., Schenone, M., Ferreira, M.V., Kramann, R., Joyce, C.E., Hartigan, C., Beier, F., Brümmendorf, T.H., Germing, U., Platzbecker, U., Busche, G., Knuchel, R., Chen, M.C., Waters, C.S., Chen, E., Chu, L.P., Novina, C.D., Lindsley, R.C., Carr, S.A. and Ebert, B.L. 2016. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nature Medicine. 22, pp. 288-297. https://doi.org/10.1038/nm.4047

JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation
Ahn, J.S., Li, J., Chen, E., Kent, D.G., Park, H.J. and Green, A.R. 2016. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 35, pp. 2235-2246. https://doi.org/10.1038/onc.2015.285

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation
Elf, S., Abdelfattah, N.S., Chen, E., Perales-Patón, J., Rosen, E.A., Ko, A., Peskier, F., Florescu, N., Giannini, S., Wolach, O., Morgan, E.A., Tothova, Z., Losman, J.A., Schneider, R.K., Al-Shahrour, F. and Mullally, A. 2016. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discovery. 6, pp. 368-381. https://doi.org/10.1158/2159-8290.CD-15-1434

Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms
Tapper, W., Jones, A.V., Kralovics, R., Harutyunyan, A.S., Zoi, K., Leung, W., Godfrey, A.L., Guglielmelli, P., Callaway, A., Ward, D., Aranaz, P., White, H.E., Waghorn, K., Lin, F., Chase, A., Baxter, E.J., Maclean, C., Nangalia, J., Chen, E., Evans, P., Short, M., Jack, A., Wallis, L., Oscier, D., Duncombe, A.S., Schuh, A., Mead, A.J., Griffiths, M., Ewing, J., Gale, R.E., Schnittger, S., Haferlach, T., Stegelmann, F., Dohner, K., Grallert, H., Strauch, K., Tanaka, T., Bandinelli, S., Giannopoulos, A., Pieri, L., Mannarelli, C., Gisslinger, H., Barosi, G., Cazzola, M., Reiter, A., Harrison, C., Campbell P., Green, A.R., Vannucchi, A. and Cross N.C. 2015. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications . 6 6691. https://doi.org/10.1038/ncomms7691

RECQL5 suppresses oncogenic JAK2-induced replication stress and genomic instability
Chen, E., Ahn, J.S., Sykes, D.B., Breyfogle, L.J., Godfrey, A.L., Nangalia, J., Ko, A., DeAngelo, D.J., Green, A.R. and Mullally, A. 2015. RECQL5 suppresses oncogenic JAK2-induced replication stress and genomic instability. Cell Reports. 13, pp. 2345-2532. https://doi.org/10.1016/j.celrep.2015.11.037

JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease
Li, J., Kent, D.G., Godfrey, A.L., Manning, H., Nangalia, J., Aziz, A., Chen, E., Saeb-Parsy, K., Find, J., Sneade, R., Hamilton, T.L., Pask, D.C., Silber, Y., Zhao, X., Ghevaert, C., Liu, P. and Green, A.R. 2014. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood. 123, pp. 3139-3151. https://doi.org/10.1182/blood-2013-06-510222

JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response
Chen, E., Ahn, J.S., Massie, C.E., Clynes, D., Godfrey, A.L., Li, J., Park, H.J., Nangalia, J., Silber, Y., Mullally, A., Gibbons, R.J. and Green, A.R. 2014. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proceedings of the National Academy of Sciences of the United States of America. 111, pp. 15190-15195. https://doi.org/10.1073/pnas.1401873111

How does JAK2V617F contribute to pathogenesis of myeloproliferative neoplasms? (Review)
Chen, E. and Mullally, A. 2014. How does JAK2V617F contribute to pathogenesis of myeloproliferative neoplasms? (Review). Hematology American Society of Hematology Education Program. 2014, pp. 268-276. https://doi.org/10.1182/asheducation-2014.1.268

Clonal analysis reveal associations of JAK2V617F homozygosity with hematological features, age and gender in PV and ET
Godfrey, A.L., Chen, E., Pagano, F., Silber, Y., Campbell, P.J. and Green, A.R. 2013. Clonal analysis reveal associations of JAK2V617F homozygosity with hematological features, age and gender in PV and ET. Haematologica. 98, pp. 718-721. https://doi.org/10.3324/haematol.2012.079129

JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone
Godfrey, A.L., Chen, E., Pagano, F., Ortmann, C.A., Silber, Y., Belosillo, B., Guglielmelli, P., Harrison, C., Reilly, J.T., Stegelmann, F., Bijou, F., Lippert, E., McMullin, M.F., Boiron, J.M., Doehner, K., Vannucchi, A.M., Besses, C., Campbell, P.J. and Green, A.R. 2012. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood. 120, pp. 2704-2707. https://doi.org/10.1182/blood-2012-05-431791

Janus kinase deregulation in leukemia and lymphoma (Review)
Chen, E., Staudt, L.M. and Green, A.R. 2012. Janus kinase deregulation in leukemia and lymphoma (Review). Immunity. 36 (4), pp. 529-541. https://doi.org/10.1016/j.immuni.2012.03.017

Mouse models of myeloproliferative Neoplasms: JAK of all grades. (Review)
Li, J., Kent, D.G., Chen, E. and Green, A.R. 2011. Mouse models of myeloproliferative Neoplasms: JAK of all grades. (Review). Disease Models and Mechanisms. 4, pp. 311-317. https://doi.org/10.1242/dmm.006817

Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm
Beer, P.A., Delhommeau, F., Lecouedic, J.P., Dawson, M.A., Chen, E., Bareford, D., Kusec, R., McMullin, M.F., Harrison, C.N., Vannucchi, A., Vainchenker, W. and Green, A.R. 2010. Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 115, pp. 2891-2900. https://doi.org/10.1182/blood-2009-08-236596

JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia
Li, J., Spensberger, D., Ahn, J.S., Anand, S., Beer, P.A., Ghevaert, C., Chen, E., Forrai, A., Scott, L.M., Ferreira, R., Campbell, P.J., Watson, S.P., Liu, P., Erber, W.N., Huntly, B.J., Ottersbach, K. and Green, A.R. 2010. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 116, pp. 1528-1538. https://doi.org/10.1182/blood-2009-12-259747

Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling
Chen, E., Beer, P.A., Godfrey, A.L., Ortmann, C.A., Li, J., Costa-Pereira, A.P., Ingle, C.E., Dermitzakis, E.T., Campbell, P.J. and Green, A.R. 2010. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 18, pp. 524-535. https://doi.org/10.1016/j.ccr.2010.10.013

Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling
Wood, A.D., Chen, E., Donaldson, I.J., Hattangadi, S., Burke, K.A., Dawson, M.A., Miranda-Saavendra, D., Lodish, H.F., Green, A.R. and Gottgens, B. 2009. Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling. Blood. 114, pp. 1820-1830. https://doi.org/10.1182/blood-2009-02-206573

Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-Transgenic mice
Chen, E., Lim, M.S., Rosic-Kablar, S., Liu, J., Jolicoeur, P., Dube, I.D. and Hough, M.R. 2006. Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-Transgenic mice. Oncogene. 25, pp. 2575-2587. https://doi.org/10.1038/sj.onc.1209285

Loss of UBR1 promotes aneuploidy and accelerates B cell lymphomagenesis in TLX1/HOX11-Transgenic mice
Chen, E., Kwon, Y.T., Lim, M.S., Dube, I.D. and Hough, M.R. 2006. Loss of UBR1 promotes aneuploidy and accelerates B cell lymphomagenesis in TLX1/HOX11-Transgenic mice. Oncogene. 25, pp. 5752-5763. https://doi.org/10.1038/sj.onc.1209573

Permalink - https://westminsterresearch.westminster.ac.uk/item/qy566/distinct-effects-of-concomitant-jak2v617f-expression-and-tet2-loss-in-mice-combine-to-promote-disease-progression-in-myeloproliferative-neoplasms


Share this

Usage statistics

112 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.