Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis

Rivera, J.F., Baral, A.J., Nadat, F., Boyd, G., Smyth, R., Patel, H., Burman, E.L., Alameer, G., Boxall, S.A., Jackson, B.R., Baxter, E.J., Laslo, P., Green, A.R., Kent, D.G., Mullally, A. and Chen, E. 2021. Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Advances. 5 (7), pp. 1922-1932. https://doi.org/10.1182/bloodadvances.2020002402

TitleZinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis
TypeJournal article
AuthorsRivera, J.F., Baral, A.J., Nadat, F., Boyd, G., Smyth, R., Patel, H., Burman, E.L., Alameer, G., Boxall, S.A., Jackson, B.R., Baxter, E.J., Laslo, P., Green, A.R., Kent, D.G., Mullally, A. and Chen, E.
Abstract

Calreticulin (CALR) is mutated in the majority of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs). Mutant CALR (CALRdel52) exerts its effect by binding to the thrombopoietin receptor MPL to cause constitutive activation of JAK-STAT signaling. In this study, we performed an extensive mutagenesis screen of the CALR globular N-domain and revealed 2 motifs critical for CALRdel52 oncogenic activity: (1) the glycan-binding lectin motif and (2) the zinc-binding domain. Further analysis demonstrated that the zinc-binding domain was essential for formation of CALRdel52 multimers, which was a co-requisite for MPL binding. CALRdel52 variants incapable of binding zinc were unable to homomultimerize, form CALRdel52-MPL heteromeric complexes, or stimulate JAK-STAT signaling. Finally, treatment with zinc chelation disrupted CALRdel52-MPL complexes in hematopoietic cells in conjunction with preferential eradication of cells expressing CALRdel52 relative to cells expressing other MPN oncogenes. In addition, zinc chelators exhibited a therapeutic effect in preferentially impairing growth of CALRdel52-mutant erythroblasts relative to unmutated erythroblasts in primary cultures of MPN patients. Together, our data implicate zinc as an essential cofactor for CALRdel52 oncogenic activity by enabling CALRdel52 multimerization and interaction with MPL, and suggests that perturbation of intracellular zinc levels may represent a new approach to abrogate the oncogenic activity of CALRdel52 in the treatment of MPNs.

JournalBlood Advances
Journal citation5 (7), pp. 1922-1932
ISSN2473-9529
2473-9537
Year2021
PublisherAmerican Society of Hematology
Publisher's version
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1182/bloodadvances.2020002402
Publication dates
Published online05 Apr 2021
Published in print13 Apr 2021

Related outputs

Modelling and Simulation of Proteins
Patel, H. and Kukol, A. 2021. Modelling and Simulation of Proteins. in: Rapley, R. (ed.) Molecular Biology and Biotechnology Royal Society of Chemistry. pp. 394-409

Proteins and Proteomics
Patel, H. and Whitehouse, D. 2021. Proteins and Proteomics. in: Rapley, R. (ed.) Molecular Biology and Biotechnology Royal Society of Chemistry. pp. 123-152

Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML
Tothova, Z., Valton, A., Gorelov, R., Vallurupalli, M., Krill-Burger, J.M., Holmes, A., Landers, C.C., Haydu, J.E., Malolepsza, E., Hartigan, C.R., Donahue, M., Popova, K.D., Koochaki, S.H.J., Venev, S.V., Rivera, J.F., Chen, E., Lage, K., Schenone, M., D'Andrea, A.D., Carr, S.A., Morgan, E.A., Dekker, J. and Ebert, B.L. 2021. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight. 6 (3) e142149. https://doi.org/10.1172/jci.insight.142149

Integrating molecular modelling methods to advance influenza A virus drug discovery
Patel, H. and Kukol, A. 2021. Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today. 26 (2), pp. 503-510. https://doi.org/10.1016/j.drudis.2020.11.014

Microbial Proteomics
Patel, H. and Whitehouse, D. 2019. Microbial Proteomics. in: Rapley, R. and Whitehouse, D. (ed.) Genomics and Clinical Diagnostics The Royal Society of Chemistry. pp. 103-139

Prediction of ligands to universally conserved binding sites of the influenza A virus nuclear export protein
Patel, H. and Kukol, A 2019. Prediction of ligands to universally conserved binding sites of the influenza A virus nuclear export protein. Virology. 537, pp. 97-103. https://doi.org/10.1016/j.virol.2019.08.013

Mechanism of completion of peptidyltransferase centre assembly in eukaryotes
Kargas, V., Castro-Hartmann, P., Escudero-Urquijo, N., Dent, K., Hilcenko, C., Sailer, C., Zisser, G., Marques-Carvalho, M.J., Pellegrino, S., Wawiorka, L., Freund, S.M., Wagstaff, J.L., Andreeva, A., Faille, A., Chen, E., Stengel, F., Bergler, H. and Warren, A.J. 2019. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. eLife. 8, p. e44904 e44904. https://doi.org/10.7554/eLife.44904

Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN
Elf, S., Abdelfattah, N.S., Baral, A.J., Beeson, D., Rivera, J.F., Ko, A., Florescu, N., Birrane, G., Chen, E. and Mullally, A. 2018. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 131 (7), pp. 782-786. https://doi.org/10.1182/blood-2017-08-800896

Evolutionary conservation of influenza A PB2 sequences reveals potential target sites for small molecule inhibitors.
Patel, H. and Kukol, A. 2017. Evolutionary conservation of influenza A PB2 sequences reveals potential target sites for small molecule inhibitors. Virology. 509, pp. 112-120. https://doi.org/10.1016/j.virol.2017.06.009

Recent discoveries of influenza A drug target sites to combat virus replication
Patel, H. and Kukol, A 2016. Recent discoveries of influenza A drug target sites to combat virus replication. Biochemical Society Transactions. 44 (3), pp. 932-936. https://doi.org/10.1042/BST20160002

Evaluation of a novel virtual screening strategy using receptor decoy binding sites
Patel, H. and Kukol, A. 2016. Evaluation of a novel virtual screening strategy using receptor decoy binding sites. Journal of Negative Results in BioMedicine. 15, pp. 1-5. https://doi.org/10.1186/s12952-016-0058-8

STAT1 activation in association with JAK2 exon 12 mutations
Godfrey, A.L., Chen, E., Massie, C.E., Silber, Y., Pagano, F., Bellosillo, B., Guglielmelli, P., Harrison, C.N., Reilly, J.T., Stegelmann, F., Bijou, F., Lippert, E., Boiron, J.M., Dohner, K., Vannucchi, A.M., Besses, C. and Green, A.R. 2016. STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 101, pp. e15-e19. https://doi.org/10.3324/haematol.2015.128546

Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9
Schneider, R.K., Schenone, M., Ferreira, M.V., Kramann, R., Joyce, C.E., Hartigan, C., Beier, F., Brümmendorf, T.H., Germing, U., Platzbecker, U., Busche, G., Knuchel, R., Chen, M.C., Waters, C.S., Chen, E., Chu, L.P., Novina, C.D., Lindsley, R.C., Carr, S.A. and Ebert, B.L. 2016. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nature Medicine. 22, pp. 288-297. https://doi.org/10.1038/nm.4047

JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation
Ahn, J.S., Li, J., Chen, E., Kent, D.G., Park, H.J. and Green, A.R. 2016. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 35, pp. 2235-2246. https://doi.org/10.1038/onc.2015.285

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation
Elf, S., Abdelfattah, N.S., Chen, E., Perales-Patón, J., Rosen, E.A., Ko, A., Peskier, F., Florescu, N., Giannini, S., Wolach, O., Morgan, E.A., Tothova, Z., Losman, J.A., Schneider, R.K., Al-Shahrour, F. and Mullally, A. 2016. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discovery. 6, pp. 368-381. https://doi.org/10.1158/2159-8290.CD-15-1434

Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms
Chen, E., Schneider, R.K., Breyfogle, L.J., Rosen, E.A., Poveromo, L., Elf, S., Ko, A., Brumme, K., Levine, R., Ebert, B.L. and Mullally, A. 2015. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms. Blood. 125, pp. 327-335. https://doi.org/10.1182/blood-2014-04-567024

Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms
Tapper, W., Jones, A.V., Kralovics, R., Harutyunyan, A.S., Zoi, K., Leung, W., Godfrey, A.L., Guglielmelli, P., Callaway, A., Ward, D., Aranaz, P., White, H.E., Waghorn, K., Lin, F., Chase, A., Baxter, E.J., Maclean, C., Nangalia, J., Chen, E., Evans, P., Short, M., Jack, A., Wallis, L., Oscier, D., Duncombe, A.S., Schuh, A., Mead, A.J., Griffiths, M., Ewing, J., Gale, R.E., Schnittger, S., Haferlach, T., Stegelmann, F., Dohner, K., Grallert, H., Strauch, K., Tanaka, T., Bandinelli, S., Giannopoulos, A., Pieri, L., Mannarelli, C., Gisslinger, H., Barosi, G., Cazzola, M., Reiter, A., Harrison, C., Campbell P., Green, A.R., Vannucchi, A. and Cross N.C. 2015. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications . 6 6691. https://doi.org/10.1038/ncomms7691

RECQL5 suppresses oncogenic JAK2-induced replication stress and genomic instability
Chen, E., Ahn, J.S., Sykes, D.B., Breyfogle, L.J., Godfrey, A.L., Nangalia, J., Ko, A., DeAngelo, D.J., Green, A.R. and Mullally, A. 2015. RECQL5 suppresses oncogenic JAK2-induced replication stress and genomic instability. Cell Reports. 13, pp. 2345-2532. https://doi.org/10.1016/j.celrep.2015.11.037

Influenza A nucleoprotein binding sites for antivirals: current research and future potential
Patel, H. and Kukol, A 2014. Influenza A nucleoprotein binding sites for antivirals: current research and future potential. Future Virology. 9, pp. 625-627. https://doi.org/10.2217/fvl.14.45

JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease
Li, J., Kent, D.G., Godfrey, A.L., Manning, H., Nangalia, J., Aziz, A., Chen, E., Saeb-Parsy, K., Find, J., Sneade, R., Hamilton, T.L., Pask, D.C., Silber, Y., Zhao, X., Ghevaert, C., Liu, P. and Green, A.R. 2014. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood. 123, pp. 3139-3151. https://doi.org/10.1182/blood-2013-06-510222

JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response
Chen, E., Ahn, J.S., Massie, C.E., Clynes, D., Godfrey, A.L., Li, J., Park, H.J., Nangalia, J., Silber, Y., Mullally, A., Gibbons, R.J. and Green, A.R. 2014. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proceedings of the National Academy of Sciences of the United States of America. 111, pp. 15190-15195. https://doi.org/10.1073/pnas.1401873111

How does JAK2V617F contribute to pathogenesis of myeloproliferative neoplasms? (Review)
Chen, E. and Mullally, A. 2014. How does JAK2V617F contribute to pathogenesis of myeloproliferative neoplasms? (Review). Hematology American Society of Hematology Education Program. 2014, pp. 268-276. https://doi.org/10.1182/asheducation-2014.1.268

Clonal analysis reveal associations of JAK2V617F homozygosity with hematological features, age and gender in PV and ET
Godfrey, A.L., Chen, E., Pagano, F., Silber, Y., Campbell, P.J. and Green, A.R. 2013. Clonal analysis reveal associations of JAK2V617F homozygosity with hematological features, age and gender in PV and ET. Haematologica. 98, pp. 718-721. https://doi.org/10.3324/haematol.2012.079129

JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone
Godfrey, A.L., Chen, E., Pagano, F., Ortmann, C.A., Silber, Y., Belosillo, B., Guglielmelli, P., Harrison, C., Reilly, J.T., Stegelmann, F., Bijou, F., Lippert, E., McMullin, M.F., Boiron, J.M., Doehner, K., Vannucchi, A.M., Besses, C., Campbell, P.J. and Green, A.R. 2012. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood. 120, pp. 2704-2707. https://doi.org/10.1182/blood-2012-05-431791

Janus kinase deregulation in leukemia and lymphoma (Review)
Chen, E., Staudt, L.M. and Green, A.R. 2012. Janus kinase deregulation in leukemia and lymphoma (Review). Immunity. 36 (4), pp. 529-541. https://doi.org/10.1016/j.immuni.2012.03.017

Mouse models of myeloproliferative Neoplasms: JAK of all grades. (Review)
Li, J., Kent, D.G., Chen, E. and Green, A.R. 2011. Mouse models of myeloproliferative Neoplasms: JAK of all grades. (Review). Disease Models and Mechanisms. 4, pp. 311-317. https://doi.org/10.1242/dmm.006817

Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm
Beer, P.A., Delhommeau, F., Lecouedic, J.P., Dawson, M.A., Chen, E., Bareford, D., Kusec, R., McMullin, M.F., Harrison, C.N., Vannucchi, A., Vainchenker, W. and Green, A.R. 2010. Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 115, pp. 2891-2900. https://doi.org/10.1182/blood-2009-08-236596

JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia
Li, J., Spensberger, D., Ahn, J.S., Anand, S., Beer, P.A., Ghevaert, C., Chen, E., Forrai, A., Scott, L.M., Ferreira, R., Campbell, P.J., Watson, S.P., Liu, P., Erber, W.N., Huntly, B.J., Ottersbach, K. and Green, A.R. 2010. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 116, pp. 1528-1538. https://doi.org/10.1182/blood-2009-12-259747

Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling
Chen, E., Beer, P.A., Godfrey, A.L., Ortmann, C.A., Li, J., Costa-Pereira, A.P., Ingle, C.E., Dermitzakis, E.T., Campbell, P.J. and Green, A.R. 2010. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 18, pp. 524-535. https://doi.org/10.1016/j.ccr.2010.10.013

Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling
Wood, A.D., Chen, E., Donaldson, I.J., Hattangadi, S., Burke, K.A., Dawson, M.A., Miranda-Saavendra, D., Lodish, H.F., Green, A.R. and Gottgens, B. 2009. Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling. Blood. 114, pp. 1820-1830. https://doi.org/10.1182/blood-2009-02-206573

Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-Transgenic mice
Chen, E., Lim, M.S., Rosic-Kablar, S., Liu, J., Jolicoeur, P., Dube, I.D. and Hough, M.R. 2006. Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-Transgenic mice. Oncogene. 25, pp. 2575-2587. https://doi.org/10.1038/sj.onc.1209285

Loss of UBR1 promotes aneuploidy and accelerates B cell lymphomagenesis in TLX1/HOX11-Transgenic mice
Chen, E., Kwon, Y.T., Lim, M.S., Dube, I.D. and Hough, M.R. 2006. Loss of UBR1 promotes aneuploidy and accelerates B cell lymphomagenesis in TLX1/HOX11-Transgenic mice. Oncogene. 25, pp. 5752-5763. https://doi.org/10.1038/sj.onc.1209573

Permalink - https://westminsterresearch.westminster.ac.uk/item/v45qq/zinc-dependent-multimerization-of-mutant-calreticulin-is-required-for-mpl-binding-and-mpn-pathogenesis


Share this
Tweet
Email

Usage statistics

8 total views
4 total downloads
3 views this month
1 downloads this month
These values are for the period from September 2nd 2018, when this repository was created

Export as