Modelling and Simulation of Proteins
Patel, H. and Kukol, A. 2021. Modelling and Simulation of Proteins. in: Rapley, R. (ed.) Molecular Biology and Biotechnology Royal Society of Chemistry. pp. 394-409
Patel, H. and Kukol, A. 2021. Modelling and Simulation of Proteins. in: Rapley, R. (ed.) Molecular Biology and Biotechnology Royal Society of Chemistry. pp. 394-409
Chapter title | Modelling and Simulation of Proteins |
---|---|
Authors | Patel, H. and Kukol, A. |
Editors | Rapley, R. |
Book title | Molecular Biology and Biotechnology |
Page range | 394-409 |
Year | 2021 |
Publisher | Royal Society of Chemistry |
Publication dates | |
Published | 17 May 2021 |
Edition | 7th |
ISBN | 9781788017862 |
Molecular simulations and virtual screening to investigate the structure and binding sites of the Influenza A virus Nuclear Export Protein
Patel, H. and Kukol, A 2022. Molecular simulations and virtual screening to investigate the structure and binding sites of the Influenza A virus Nuclear Export Protein. Women in Bioinformatics and Data Science. Online 20 - 22 Sep 2022
C2 by-pass: cross-talk between the complement classical and alternative pathways
Laich, A., Patel, H., Zarantonello, A., Sim, R.B. and Inal, J.M. 2022. C2 by-pass: cross-talk between the complement classical and alternative pathways. Immunobiology. 227 (3) 152225. https://doi.org/10.1016/j.imbio.2022.152225
Proteins and Proteomics
Patel, H. and Whitehouse, D. 2021. Proteins and Proteomics. in: Rapley, R. (ed.) Molecular Biology and Biotechnology Royal Society of Chemistry. pp. 123-152
Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis
Rivera, J.F., Baral, A.J., Nadat, F., Boyd, G., Smyth, R., Patel, H., Burman, E.L., Alameer, G., Boxall, S.A., Jackson, B.R., Baxter, E.J., Laslo, P., Green, A.R., Kent, D.G., Mullally, A. and Chen, E. 2021. Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Advances. 5 (7), pp. 1922-1932. https://doi.org/10.1182/bloodadvances.2020002402
Integrating molecular modelling methods to advance influenza A virus drug discovery
Patel, H. and Kukol, A. 2021. Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today. 26 (2), pp. 503-510. https://doi.org/10.1016/j.drudis.2020.11.014
Microbial Proteomics
Patel, H. and Whitehouse, D. 2019. Microbial Proteomics. in: Rapley, R. and Whitehouse, D. (ed.) Genomics and Clinical Diagnostics The Royal Society of Chemistry. pp. 103-139
Prediction of ligands to universally conserved binding sites of the influenza A virus nuclear export protein
Patel, H. and Kukol, A 2019. Prediction of ligands to universally conserved binding sites of the influenza A virus nuclear export protein. Virology. 537, pp. 97-103. https://doi.org/10.1016/j.virol.2019.08.013
Evolutionary conservation of influenza A PB2 sequences reveals potential target sites for small molecule inhibitors.
Patel, H. and Kukol, A. 2017. Evolutionary conservation of influenza A PB2 sequences reveals potential target sites for small molecule inhibitors. Virology. 509, pp. 112-120. https://doi.org/10.1016/j.virol.2017.06.009
Recent discoveries of influenza A drug target sites to combat virus replication
Patel, H. and Kukol, A 2016. Recent discoveries of influenza A drug target sites to combat virus replication. Biochemical Society Transactions. 44 (3), pp. 932-936. https://doi.org/10.1042/BST20160002
Evaluation of a novel virtual screening strategy using receptor decoy binding sites
Patel, H. and Kukol, A. 2016. Evaluation of a novel virtual screening strategy using receptor decoy binding sites. Journal of Negative Results in BioMedicine. 15, pp. 1-5. https://doi.org/10.1186/s12952-016-0058-8
Influenza A nucleoprotein binding sites for antivirals: current research and future potential
Patel, H. and Kukol, A 2014. Influenza A nucleoprotein binding sites for antivirals: current research and future potential. Future Virology. 9, pp. 625-627. https://doi.org/10.2217/fvl.14.45
Permalink - https://westminsterresearch.westminster.ac.uk/item/v6024/modelling-and-simulation-of-proteins