Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling

Chen, E., Beer, P.A., Godfrey, A.L., Ortmann, C.A., Li, J., Costa-Pereira, A.P., Ingle, C.E., Dermitzakis, E.T., Campbell, P.J. and Green, A.R. 2010. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell. 18, pp. 524-535. https://doi.org/10.1016/j.ccr.2010.10.013

TitleDistinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling
TypeJournal article
AuthorsChen, E., Beer, P.A., Godfrey, A.L., Ortmann, C.A., Li, J., Costa-Pereira, A.P., Ingle, C.E., Dermitzakis, E.T., Campbell, P.J. and Green, A.R.
Abstract

The JAK2V617F mutation is associated with distinct myeloproliferative neoplasms, including polycythemia vera (PV) and essential thrombocythemia (ET), but it remains unclear how it generates disparate disorders. By comparing clonally-derived mutant and wild-type cells from individual patients, we demonstrate that the transcriptional consequences of JAK2V617F are subtle, and that JAK2V617F-heterozygous erythroid cells from ET and PV patients exhibit differential interferon signaling and STAT1 phosphorylation. Increased STAT1 activity in normal CD34-positive progenitors produces an ET-like phenotype, whereas downregulation of STAT1 activity in JAK2V617F-heterozygous ET progenitors produces a PV-like phenotype. Our results illustrate the power of clonal analysis, indicate that the consequences of JAK2V617F reflect a balance between STAT5 and STAT1 activation and are relevant for other neoplasms associated with signaling pathway mutations

JournalCancer Cell
Journal citation18, pp. 524-535
ISSN1535-6108
Year2010
PublisherCell Press
Digital Object Identifier (DOI)https://doi.org/10.1016/j.ccr.2010.10.013
Publication dates
Published11 Nov 2010

Related outputs

Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis
Rivera, J.F., Baral, A.J., Nadat, F., Boyd, G., Smyth, R., Patel, H., Burman, E.L., Alameer, G., Boxall, S.A., Jackson, B.R., Baxter, E.J., Laslo, P., Green, A.R., Kent, D.G., Mullally, A. and Chen, E. 2021. Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Advances. 5 (7), pp. 1922-1932. https://doi.org/10.1182/bloodadvances.2020002402

Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML
Tothova, Z., Valton, A., Gorelov, R., Vallurupalli, M., Krill-Burger, J.M., Holmes, A., Landers, C.C., Haydu, J.E., Malolepsza, E., Hartigan, C.R., Donahue, M., Popova, K.D., Koochaki, S.H.J., Venev, S.V., Rivera, J.F., Chen, E., Lage, K., Schenone, M., D'Andrea, A.D., Carr, S.A., Morgan, E.A., Dekker, J. and Ebert, B.L. 2021. Cohesin mutations alter DNA damage repair and chromatin structure and create therapeutic vulnerabilities in MDS/AML. JCI Insight. 6 (3) e142149. https://doi.org/10.1172/jci.insight.142149

Mechanism of completion of peptidyltransferase centre assembly in eukaryotes
Kargas, V., Castro-Hartmann, P., Escudero-Urquijo, N., Dent, K., Hilcenko, C., Sailer, C., Zisser, G., Marques-Carvalho, M.J., Pellegrino, S., Wawiorka, L., Freund, S.M., Wagstaff, J.L., Andreeva, A., Faille, A., Chen, E., Stengel, F., Bergler, H. and Warren, A.J. 2019. Mechanism of completion of peptidyltransferase centre assembly in eukaryotes. eLife. 8, p. e44904 e44904. https://doi.org/10.7554/eLife.44904

Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN
Elf, S., Abdelfattah, N.S., Baral, A.J., Beeson, D., Rivera, J.F., Ko, A., Florescu, N., Birrane, G., Chen, E. and Mullally, A. 2018. Defining the requirements for the pathogenic interaction between mutant calreticulin and MPL in MPN. Blood. 131 (7), pp. 782-786. https://doi.org/10.1182/blood-2017-08-800896

STAT1 activation in association with JAK2 exon 12 mutations
Godfrey, A.L., Chen, E., Massie, C.E., Silber, Y., Pagano, F., Bellosillo, B., Guglielmelli, P., Harrison, C.N., Reilly, J.T., Stegelmann, F., Bijou, F., Lippert, E., Boiron, J.M., Dohner, K., Vannucchi, A.M., Besses, C. and Green, A.R. 2016. STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 101, pp. e15-e19. https://doi.org/10.3324/haematol.2015.128546

Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9
Schneider, R.K., Schenone, M., Ferreira, M.V., Kramann, R., Joyce, C.E., Hartigan, C., Beier, F., Brümmendorf, T.H., Germing, U., Platzbecker, U., Busche, G., Knuchel, R., Chen, M.C., Waters, C.S., Chen, E., Chu, L.P., Novina, C.D., Lindsley, R.C., Carr, S.A. and Ebert, B.L. 2016. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nature Medicine. 22, pp. 288-297. https://doi.org/10.1038/nm.4047

JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation
Ahn, J.S., Li, J., Chen, E., Kent, D.G., Park, H.J. and Green, A.R. 2016. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 35, pp. 2235-2246. https://doi.org/10.1038/onc.2015.285

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation
Elf, S., Abdelfattah, N.S., Chen, E., Perales-Patón, J., Rosen, E.A., Ko, A., Peskier, F., Florescu, N., Giannini, S., Wolach, O., Morgan, E.A., Tothova, Z., Losman, J.A., Schneider, R.K., Al-Shahrour, F. and Mullally, A. 2016. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discovery. 6, pp. 368-381. https://doi.org/10.1158/2159-8290.CD-15-1434

Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms
Chen, E., Schneider, R.K., Breyfogle, L.J., Rosen, E.A., Poveromo, L., Elf, S., Ko, A., Brumme, K., Levine, R., Ebert, B.L. and Mullally, A. 2015. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice combine to promote disease progression in myeloproliferative neoplasms. Blood. 125, pp. 327-335. https://doi.org/10.1182/blood-2014-04-567024

Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms
Tapper, W., Jones, A.V., Kralovics, R., Harutyunyan, A.S., Zoi, K., Leung, W., Godfrey, A.L., Guglielmelli, P., Callaway, A., Ward, D., Aranaz, P., White, H.E., Waghorn, K., Lin, F., Chase, A., Baxter, E.J., Maclean, C., Nangalia, J., Chen, E., Evans, P., Short, M., Jack, A., Wallis, L., Oscier, D., Duncombe, A.S., Schuh, A., Mead, A.J., Griffiths, M., Ewing, J., Gale, R.E., Schnittger, S., Haferlach, T., Stegelmann, F., Dohner, K., Grallert, H., Strauch, K., Tanaka, T., Bandinelli, S., Giannopoulos, A., Pieri, L., Mannarelli, C., Gisslinger, H., Barosi, G., Cazzola, M., Reiter, A., Harrison, C., Campbell P., Green, A.R., Vannucchi, A. and Cross N.C. 2015. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications . 6 6691. https://doi.org/10.1038/ncomms7691

RECQL5 suppresses oncogenic JAK2-induced replication stress and genomic instability
Chen, E., Ahn, J.S., Sykes, D.B., Breyfogle, L.J., Godfrey, A.L., Nangalia, J., Ko, A., DeAngelo, D.J., Green, A.R. and Mullally, A. 2015. RECQL5 suppresses oncogenic JAK2-induced replication stress and genomic instability. Cell Reports. 13, pp. 2345-2532. https://doi.org/10.1016/j.celrep.2015.11.037

JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease
Li, J., Kent, D.G., Godfrey, A.L., Manning, H., Nangalia, J., Aziz, A., Chen, E., Saeb-Parsy, K., Find, J., Sneade, R., Hamilton, T.L., Pask, D.C., Silber, Y., Zhao, X., Ghevaert, C., Liu, P. and Green, A.R. 2014. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood. 123, pp. 3139-3151. https://doi.org/10.1182/blood-2013-06-510222

JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response
Chen, E., Ahn, J.S., Massie, C.E., Clynes, D., Godfrey, A.L., Li, J., Park, H.J., Nangalia, J., Silber, Y., Mullally, A., Gibbons, R.J. and Green, A.R. 2014. JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proceedings of the National Academy of Sciences of the United States of America. 111, pp. 15190-15195. https://doi.org/10.1073/pnas.1401873111

How does JAK2V617F contribute to pathogenesis of myeloproliferative neoplasms? (Review)
Chen, E. and Mullally, A. 2014. How does JAK2V617F contribute to pathogenesis of myeloproliferative neoplasms? (Review). Hematology American Society of Hematology Education Program. 2014, pp. 268-276. https://doi.org/10.1182/asheducation-2014.1.268

Clonal analysis reveal associations of JAK2V617F homozygosity with hematological features, age and gender in PV and ET
Godfrey, A.L., Chen, E., Pagano, F., Silber, Y., Campbell, P.J. and Green, A.R. 2013. Clonal analysis reveal associations of JAK2V617F homozygosity with hematological features, age and gender in PV and ET. Haematologica. 98, pp. 718-721. https://doi.org/10.3324/haematol.2012.079129

JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone
Godfrey, A.L., Chen, E., Pagano, F., Ortmann, C.A., Silber, Y., Belosillo, B., Guglielmelli, P., Harrison, C., Reilly, J.T., Stegelmann, F., Bijou, F., Lippert, E., McMullin, M.F., Boiron, J.M., Doehner, K., Vannucchi, A.M., Besses, C., Campbell, P.J. and Green, A.R. 2012. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood. 120, pp. 2704-2707. https://doi.org/10.1182/blood-2012-05-431791

Janus kinase deregulation in leukemia and lymphoma (Review)
Chen, E., Staudt, L.M. and Green, A.R. 2012. Janus kinase deregulation in leukemia and lymphoma (Review). Immunity. 36 (4), pp. 529-541. https://doi.org/10.1016/j.immuni.2012.03.017

Mouse models of myeloproliferative Neoplasms: JAK of all grades. (Review)
Li, J., Kent, D.G., Chen, E. and Green, A.R. 2011. Mouse models of myeloproliferative Neoplasms: JAK of all grades. (Review). Disease Models and Mechanisms. 4, pp. 311-317. https://doi.org/10.1242/dmm.006817

Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm
Beer, P.A., Delhommeau, F., Lecouedic, J.P., Dawson, M.A., Chen, E., Bareford, D., Kusec, R., McMullin, M.F., Harrison, C.N., Vannucchi, A., Vainchenker, W. and Green, A.R. 2010. Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 115, pp. 2891-2900. https://doi.org/10.1182/blood-2009-08-236596

JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia
Li, J., Spensberger, D., Ahn, J.S., Anand, S., Beer, P.A., Ghevaert, C., Chen, E., Forrai, A., Scott, L.M., Ferreira, R., Campbell, P.J., Watson, S.P., Liu, P., Erber, W.N., Huntly, B.J., Ottersbach, K. and Green, A.R. 2010. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 116, pp. 1528-1538. https://doi.org/10.1182/blood-2009-12-259747

Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling
Wood, A.D., Chen, E., Donaldson, I.J., Hattangadi, S., Burke, K.A., Dawson, M.A., Miranda-Saavendra, D., Lodish, H.F., Green, A.R. and Gottgens, B. 2009. Id1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signalling. Blood. 114, pp. 1820-1830. https://doi.org/10.1182/blood-2009-02-206573

Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-Transgenic mice
Chen, E., Lim, M.S., Rosic-Kablar, S., Liu, J., Jolicoeur, P., Dube, I.D. and Hough, M.R. 2006. Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-Transgenic mice. Oncogene. 25, pp. 2575-2587. https://doi.org/10.1038/sj.onc.1209285

Loss of UBR1 promotes aneuploidy and accelerates B cell lymphomagenesis in TLX1/HOX11-Transgenic mice
Chen, E., Kwon, Y.T., Lim, M.S., Dube, I.D. and Hough, M.R. 2006. Loss of UBR1 promotes aneuploidy and accelerates B cell lymphomagenesis in TLX1/HOX11-Transgenic mice. Oncogene. 25, pp. 5752-5763. https://doi.org/10.1038/sj.onc.1209573

Permalink - https://westminsterresearch.westminster.ac.uk/item/qy572/distinct-clinical-phenotypes-associated-with-jak2v617f-reflect-differential-stat1-signaling


Share this
Tweet
Email

Usage statistics

12 total views
0 total downloads
0 views this month
0 downloads this month
These values are for the period from September 2nd 2018, when this repository was created

Export as