The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle

Piccus, R. and Brayson, D. 2020. The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle. Biology Letters. 16 (7) 20200302. https://doi.org/10.1098/rsbl.2020.0302

TitleThe nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle
TypeJournal article
AuthorsPiccus, R. and Brayson, D.
Abstract

Regulation of the genome is viewed through the prism of gene expression, DNA replication and DNA repair as controlled through transcription, chromatin compartmentalisation and recruitment of repair factors by enzymes such as DNA polymerases, ligases, acetylases, methylases and cyclin-dependent kinases. However, recent advances in the field of muscle cell physiology have also shown a compelling role for ‘outside-in’ biophysical control of genomic material through mechanotransduction. The crucial hub that transduces these biophysical signals is called the Linker of Nucleoskeleton and Cytoskeleton (LINC). This complex is embedded across the nuclear envelope, which separates the nucleus from the cytoplasm. How the LINC complex operates to mechanically regulate the many functions of DNA is becoming increasingly clear, and recent advances have provided exciting insight into how this occurs in cells from mechanically activated tissues such as skeletal and cardiac muscle. Nevertheless, there are still some notable shortcomings in our understanding of these processes and resolving these will likely help us understand how muscle diseases manifest at the level of the genome.

Article number20200302
JournalBiology Letters
Journal citation16 (7)
ISSN1744-957X
Year2020
PublisherRoyal Society
Digital Object Identifier (DOI)https://doi.org/10.1098/rsbl.2020.0302
PubMed ID32634376
Web address (URL)https://doi.org/10.1098/rsbl.2020.0302
Publication dates
Published08 Jul 2020

Related outputs

Lamin A precursor localizes to the Z-disc of sarcomeres in the heart and is dynamically regulated in muscle cell differentiation
Brayson, D. and Shanahan, C.M. 2022. Lamin A precursor localizes to the Z-disc of sarcomeres in the heart and is dynamically regulated in muscle cell differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1864) 20210490. https://doi.org/10.1098/rstb.2021.0490

The cardio‐respiratory effects of passive heating and the human thermoneutral zone
Henderson, M.E.T., Brayson, D. and Halsey, L.G. 2021. The cardio‐respiratory effects of passive heating and the human thermoneutral zone. Physiological Reports. 9 (16) e14973. https://doi.org/10.14814/phy2.14973

Preprint: Analysis of cardiomyocyte nuclei in human cardiomyopathy reveals orientation dependent defects in shape
Brayson, D., Ehler, E., dos Remedios, C.G. and Shanahan, C.M. 2020. Preprint: Analysis of cardiomyocyte nuclei in human cardiomyopathy reveals orientation dependent defects in shape. medRxiv. https://doi.org/10.1101/2020.08.14.20168310

Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement
Brayson, D., Holohan, S-J., Bardswell, S.C., Arno, M., Lu, H., Jensen, H.K., Tran, P.K., Barallobre‐Barreiro, J., Mayr, M., dos Remedios, C.G., Tsang, V.T., Frigiola, A. and Kentish, J.C. 2020. Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement. Journal of the American Heart Association. 9 (16) e015342. https://doi.org/10.1161/jaha.119.015342

Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies
Brayson, D., Frustaci, A., Verardo, R., Chimenti, C., Russo, M.A., Hayward, R., Ahmad, S.M., Vizcay-Barrena, G., Protti, A., Zammit, P.S., dos Remedios, C.G., Ehler, E., Shah, A.M. and Shanahan, C.M. 2019. Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies. JCI Insight. 4 (22) e126315. https://doi.org/10.1172/jci.insight.126315

Dynamic heart rate response to multi-day unsupported ultra-endurance cycle racing: a case report
Daniel Brayson, Alessandra Frigiola and James E. Clark 2019. Dynamic heart rate response to multi-day unsupported ultra-endurance cycle racing: a case report. Experimental Physiology. 104 (2), pp. 174-179. https://doi.org/10.1113/ep087341

Muscle tensions merge to cause a DNA replication crisis.
Brayson, D., Ho, C.Y. and Shanahan, C.M. 2018. Muscle tensions merge to cause a DNA replication crisis. The Journal of Cell biology. 217 (6), pp. 1891-1893. https://doi.org/10.1083/jcb.201804041

Preprint: Accumulation of prelamin A drives inflammation in the heart with implications for treatment of inherited and acquired cardiomyopathies
Daniel Brayson, Andrea Frustaci, Romina Verardo, Cristina Chimenti, Matteo Antonio Russo, Robert Hayward, Sadia Munir Ahmad, Gema Vizcay-Barrena, Andrea Protti, Peter S. Zammit, Cristobal G. dos Remedios, Elisabeth Ehler, Ajay M. Shah and Catherine M. Shanahan 2018. Preprint: Accumulation of prelamin A drives inflammation in the heart with implications for treatment of inherited and acquired cardiomyopathies. biorxiv.org. https://doi.org/10.1101/457044

Current insights into LMNA cardiomyopathies: Existing models and missing LINCs.
Brayson, D. and Shanahan, C.M. 2017. Current insights into LMNA cardiomyopathies: Existing models and missing LINCs. Nucleus. 8 (1), pp. 17-33. https://doi.org/10.1080/19491034.2016.1260798

Rnd3 induces stress fibres in endothelial cells through RhoB.
Gottesbühren, U., Garg, R., Riou, P., McColl, B., Brayson, D. and Ridley, A.J. 2013. Rnd3 induces stress fibres in endothelial cells through RhoB. Biology Open. 2 (2), pp. 210-216. https://doi.org/10.1242/bio.20123574

Permalink - https://westminsterresearch.westminster.ac.uk/item/w0z43/the-nuclear-envelope-lincing-tissue-mechanics-to-genome-regulation-in-cardiac-and-skeletal-muscle


Share this

Usage statistics

51 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.