Preprint: Analysis of cardiomyocyte nuclei in human cardiomyopathy reveals orientation dependent defects in shape

Brayson, D., Ehler, E., dos Remedios, C.G. and Shanahan, C.M. 2020. Preprint: Analysis of cardiomyocyte nuclei in human cardiomyopathy reveals orientation dependent defects in shape. medRxiv. https://doi.org/10.1101/2020.08.14.20168310

TitlePreprint: Analysis of cardiomyocyte nuclei in human cardiomyopathy reveals orientation dependent defects in shape
AuthorsBrayson, D., Ehler, E., dos Remedios, C.G. and Shanahan, C.M.
Description

Cardiomyopathies are progressive diseases of heart muscle often caused by mutations in genes encoding sarcomeric, cytoskeletal and nucleoskeletal proteins though in many cases the cause of disease is not identified. Whilst nucleus hypertrophy has been described, it is not known whether nucleus shape changes are a general feature of cardiomyopathy. Due to the rod-shaped nature of cardiomyocytes and their elliptical nuclei we hypothesised that orientation of analysis would be an important determinant of any changes observed between patients exhibiting primarily unexplained cardiomyopathy and control samples from non-failing donors. To investigate this we performed image analysis of cardiomyocyte nuclei in myocardial cryosections from a cohort of cardiomyopathy patients. We discovered that circularity, solidity and aspect ratio were sensitive to orientation of the myocardium and that in the transverse plane only circularity was reduced in cardiomyocyte nuclei of cardiomyopathy patients. These findings show that orientation dependent changes in nucleus shape may be a property of cardiomyopathy and with appropriate follow up studies, may prove to have mechanistic and diagnostic value.

Year2020
PublishermedRxiv
Publication dates
Published15 Aug 2020
Digital Object Identifier (DOI)https://doi.org/10.1101/2020.08.14.20168310
Web address (URL)https://doi.org/10.1101/2020.08.14.20168310

Related outputs

Lamin A precursor localizes to the Z-disc of sarcomeres in the heart and is dynamically regulated in muscle cell differentiation
Brayson, D. and Shanahan, C.M. 2022. Lamin A precursor localizes to the Z-disc of sarcomeres in the heart and is dynamically regulated in muscle cell differentiation. Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1864) 20210490. https://doi.org/10.1098/rstb.2021.0490

The cardio‐respiratory effects of passive heating and the human thermoneutral zone
Henderson, M.E.T., Brayson, D. and Halsey, L.G. 2021. The cardio‐respiratory effects of passive heating and the human thermoneutral zone. Physiological Reports. 9 (16) e14973. https://doi.org/10.14814/phy2.14973

Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement
Brayson, D., Holohan, S-J., Bardswell, S.C., Arno, M., Lu, H., Jensen, H.K., Tran, P.K., Barallobre‐Barreiro, J., Mayr, M., dos Remedios, C.G., Tsang, V.T., Frigiola, A. and Kentish, J.C. 2020. Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement. Journal of the American Heart Association. 9 (16) e015342. https://doi.org/10.1161/jaha.119.015342

The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle
Piccus, R. and Brayson, D. 2020. The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle. Biology Letters. 16 (7) 20200302. https://doi.org/10.1098/rsbl.2020.0302

Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies
Brayson, D., Frustaci, A., Verardo, R., Chimenti, C., Russo, M.A., Hayward, R., Ahmad, S.M., Vizcay-Barrena, G., Protti, A., Zammit, P.S., dos Remedios, C.G., Ehler, E., Shah, A.M. and Shanahan, C.M. 2019. Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies. JCI Insight. 4 (22) e126315. https://doi.org/10.1172/jci.insight.126315

Dynamic heart rate response to multi-day unsupported ultra-endurance cycle racing: a case report
Daniel Brayson, Alessandra Frigiola and James E. Clark 2019. Dynamic heart rate response to multi-day unsupported ultra-endurance cycle racing: a case report. Experimental Physiology. 104 (2), pp. 174-179. https://doi.org/10.1113/ep087341

Muscle tensions merge to cause a DNA replication crisis.
Brayson, D., Ho, C.Y. and Shanahan, C.M. 2018. Muscle tensions merge to cause a DNA replication crisis. The Journal of Cell biology. 217 (6), pp. 1891-1893. https://doi.org/10.1083/jcb.201804041

Preprint: Accumulation of prelamin A drives inflammation in the heart with implications for treatment of inherited and acquired cardiomyopathies
Daniel Brayson, Andrea Frustaci, Romina Verardo, Cristina Chimenti, Matteo Antonio Russo, Robert Hayward, Sadia Munir Ahmad, Gema Vizcay-Barrena, Andrea Protti, Peter S. Zammit, Cristobal G. dos Remedios, Elisabeth Ehler, Ajay M. Shah and Catherine M. Shanahan 2018. Preprint: Accumulation of prelamin A drives inflammation in the heart with implications for treatment of inherited and acquired cardiomyopathies. biorxiv.org. https://doi.org/10.1101/457044

Current insights into LMNA cardiomyopathies: Existing models and missing LINCs.
Brayson, D. and Shanahan, C.M. 2017. Current insights into LMNA cardiomyopathies: Existing models and missing LINCs. Nucleus. 8 (1), pp. 17-33. https://doi.org/10.1080/19491034.2016.1260798

Rnd3 induces stress fibres in endothelial cells through RhoB.
Gottesbühren, U., Garg, R., Riou, P., McColl, B., Brayson, D. and Ridley, A.J. 2013. Rnd3 induces stress fibres in endothelial cells through RhoB. Biology Open. 2 (2), pp. 210-216. https://doi.org/10.1242/bio.20123574

Permalink - https://westminsterresearch.westminster.ac.uk/item/w0z46/preprint-analysis-of-cardiomyocyte-nuclei-in-human-cardiomyopathy-reveals-orientation-dependent-defects-in-shape


Share this

Usage statistics

55 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.