Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii

Steven Pratt, Nilu Wansadhipathi-Kannangara, Catherine Bruce, John Mina, Hosam Shams-Eldin, Josefina Casas, Kentaro Hanada, Ralph T. Schwarz, Sabrina Sonda and Paul Denny 2012. Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Molecular and Biochemical Parasitology. 187 (1), pp. 43-51. https://doi.org/10.1016/j.molbiopara.2012.11.007

TitleSphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii
TypeJournal article
AuthorsSteven Pratt, Nilu Wansadhipathi-Kannangara, Catherine Bruce, John Mina, Hosam Shams-Eldin, Josefina Casas, Kentaro Hanada, Ralph T. Schwarz, Sabrina Sonda and Paul Denny
Abstract

Sphingolipids are essential components of eukaryotic cell membranes, particularly the plasma membrane, and are involved in a diverse array of signal transduction pathways. Mammals produce sphingomyelin (SM) as the primary complex sphingolipid via the well characterised SM synthase. In contrast yeast, plants and some protozoa utilise an evolutionarily related inositol phosphorylceramide (IPC) synthase to synthesise IPC. This activity has no mammalian equivalent and IPC synthase has been proposed as a target for anti-fungals and anti-protozoals. However, detailed knowledge of the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites was lacking. In this study bioinformatic analyses indicated a single copy orthologue of the putative SM synthase from the apicomplexan Plasmodium falciparum (the causative agent of malaria) was a bona fide sphingolipid synthase in the related model parasite, Toxoplasma gondii (TgSLS). Subsequently, TgSLS was indicated, by complementation of a mutant cell line, to be a functional orthologue of the yeast IPC synthase (AUR1p), demonstrating resistance to the well characterised AUR1p inhibitor aureobasidin A. In vitro, recombinant TgSLS exhibited IPC synthase activity and, for the first time, the presence of IPC was demonstrated in T. gondii lipid extracts by mass spectrometry. Furthermore, host sphingolipid biosynthesis was indicated to influence, but be non-essential for, T. gondii proliferation, suggesting that whilst scavenging does take place de novo sphingolipid synthesis may be important for parasitism.

KeywordsSphingolipids
Toxoplasma gondii
Toxoplasmosis
Sphingomyelin
Inositol phosphoryl ceramide
JournalMolecular and Biochemical Parasitology
Journal citation187 (1), pp. 43-51
ISSN1872-9428
0166-6851
Year2012
PublisherElsevier
Accepted author manuscript
File Access Level
Open (open metadata and files)
Publisher's version
License
CC BY 3.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1016/j.molbiopara.2012.11.007
PubMed ID3629565
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0166685112002836?via%3Dihub
Publication dates
PublishedJan 2013
Supplemental file
File Access Level
Open (open metadata and files)

Related outputs

Sphingolipid synthases of Toxoplasma gondii and other organisms
Kannangara, N. 2013. Sphingolipid synthases of Toxoplasma gondii and other organisms. PhD thesis Durham University Biophysical sciences

Functional analyses of differentially expressed isoforms of the Arabidopsis Inositol phosphorylceramide synthase
John Mina, Y. Okada, Nilu Wansadhipathi-Kannangara, S. Pratt, H. Shams-Eldin, Ralph T. Schwarz, P. G. Steel, Tony Fawcett and Paul Denny 2010. Functional analyses of differentially expressed isoforms of the Arabidopsis Inositol phosphorylceramide synthase. Plant molecular biology. 73 (4-5), pp. 399-407. https://doi.org/10.1007/s11103-010-9626-3

The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target
Nilu Wansadhipathi-Kannangara, John Mina, Ssu-Ying Pan, Nilu Wansadhipathi, Catherine Bruce, Hosam Shams-Eldin, Ralph Schwarz, P.G. Steel and Paul W. Denny 2009. The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Molecular and Biochemical Parasitology. 168 (2009), pp. 16-23. https://doi.org/10.1016/j.molbiopara.2009.06.002

Human antibody responses to the Plasmodium vivax Duffy Binding protein in Sri Lanka
Nilu Wansadhipathi-Kannangara, W T A Wickremarachchi, K L R L Perera, S Bandara, S Longacre, S M Handunnetti and P V Udagama-Randeniya 2005. Human antibody responses to the Plasmodium vivax Duffy Binding protein in Sri Lanka. University Joint annual academic sessions, Faculties of Science and Medicine. University of Colombo, Sri Lanka 25 - 26 Jun 2004

Comparison of the two different recombinant proteins representing region II of the Duffy binding protein of Plasmodium vivax by assaying for natural antibodies
Nilu Wansadhipathi-Kannangara, Nilu Wansadhipathi, P H Premarathne, W T A Wickremarachchi, K L R L Perera, S Bandara, S M Handunnetti and P V Udagama-Randeniya 2005. Comparison of the two different recombinant proteins representing region II of the Duffy binding protein of Plasmodium vivax by assaying for natural antibodies. Allergy and Immunology Society of Sri Lanka (and FIMSA). Medical Research Council, Sri Lanka 03 - 05 Jan 2005

Human Antibody Responses to the Plamodium vivax DBP
N. K. Wansadhipathi-Kannangara 2004. Human Antibody Responses to the Plamodium vivax DBP. University Joint annual academic sessions, Faculties of Science and Medicine. University of Colombo, Sri Lanka 25 - 26 Jun 2004

Permalink - https://westminsterresearch.westminster.ac.uk/item/w5qww/sphingolipid-synthesis-and-scavenging-in-the-intracellular-apicomplexan-parasite-toxoplasma-gondii


Share this

Usage statistics

35 total views
17 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.