Functional analyses of differentially expressed isoforms of the Arabidopsis Inositol phosphorylceramide synthase

John Mina, Y. Okada, Nilu Wansadhipathi-Kannangara, S. Pratt, H. Shams-Eldin, Ralph T. Schwarz, P. G. Steel, Tony Fawcett and Paul Denny 2010. Functional analyses of differentially expressed isoforms of the Arabidopsis Inositol phosphorylceramide synthase. Plant molecular biology. 73 (4-5), pp. 399-407. https://doi.org/10.1007/s11103-010-9626-3

TitleFunctional analyses of differentially expressed isoforms of the Arabidopsis Inositol phosphorylceramide synthase
TypeJournal article
AuthorsJohn Mina, Y. Okada, Nilu Wansadhipathi-Kannangara, S. Pratt, H. Shams-Eldin, Ralph T. Schwarz, P. G. Steel, Tony Fawcett and Paul Denny
Abstract

Sphingolipids are key components of eukaryotic plasma membranes that are involved in many functions, including the formation signal transduction complexes. In addition, these lipid species and their catabolites function as secondary signalling molecules in, amongst other processes, apoptosis. The biosynthetic pathway for the formation of sphingolipid is largely conserved. However, unlike mammalian cells, fungi, protozoa and plants synthesize inositol phosphorylceramide (IPC) as their primary phosphosphingolipid. This key step involves the transfer of the phosphorylinositol group from phosphatidylinositol (PI) to phytoceramide, a process catalysed by IPC synthase in plants and fungi. This enzyme activity is at least partly encoded by the AUR1 gene in the fungi, and recently the distantly related functional orthologue of this gene has been identified in the model plant Arabidopsis. Here we functionally analysed all three predicted Arabidopsis IPC synthases, confirming them as aureobasidin A resistant AUR1p orthologues. Expression profiling revealed that the genes encoding these orthologues are differentially expressed in various tissue types isolated from Arabidopsis.

Keywordsinositol phosphorylceramide
Aureobasidin
Phosphorylinositol
Sphingolipids
Arabidopsis thaliana
Trypanosoma brucei
JournalPlant molecular biology
Journal citation73 (4-5), pp. 399-407
ISSN1573-5028
0167-4412
Year2010
PublisherSpringer
Digital Object Identifier (DOI)https://doi.org/10.1007/s11103-010-9626-3
Web address (URL)https://link.springer.com/article/10.1007/s11103-010-9626-3
Publication dates
Published23 Mar 2010
Supplemental file
File Access Level
Controlled (open metadata, closed files)

Related outputs

Sphingolipid synthases of Toxoplasma gondii and other organisms
Kannangara, N. 2013. Sphingolipid synthases of Toxoplasma gondii and other organisms. PhD thesis Durham University Biophysical sciences

Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii
Steven Pratt, Nilu Wansadhipathi-Kannangara, Catherine Bruce, John Mina, Hosam Shams-Eldin, Josefina Casas, Kentaro Hanada, Ralph T. Schwarz, Sabrina Sonda and Paul Denny 2012. Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Molecular and Biochemical Parasitology. 187 (1), pp. 43-51. https://doi.org/10.1016/j.molbiopara.2012.11.007

The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target
Nilu Wansadhipathi-Kannangara, John Mina, Ssu-Ying Pan, Nilu Wansadhipathi, Catherine Bruce, Hosam Shams-Eldin, Ralph Schwarz, P.G. Steel and Paul W. Denny 2009. The Trypanosoma brucei sphingolipid synthase, an essential enzyme and drug target. Molecular and Biochemical Parasitology. 168 (2009), pp. 16-23. https://doi.org/10.1016/j.molbiopara.2009.06.002

Human antibody responses to the Plasmodium vivax Duffy Binding protein in Sri Lanka
Nilu Wansadhipathi-Kannangara, W T A Wickremarachchi, K L R L Perera, S Bandara, S Longacre, S M Handunnetti and P V Udagama-Randeniya 2005. Human antibody responses to the Plasmodium vivax Duffy Binding protein in Sri Lanka. University Joint annual academic sessions, Faculties of Science and Medicine. University of Colombo, Sri Lanka 25 - 26 Jun 2004

Comparison of the two different recombinant proteins representing region II of the Duffy binding protein of Plasmodium vivax by assaying for natural antibodies
Nilu Wansadhipathi-Kannangara, Nilu Wansadhipathi, P H Premarathne, W T A Wickremarachchi, K L R L Perera, S Bandara, S M Handunnetti and P V Udagama-Randeniya 2005. Comparison of the two different recombinant proteins representing region II of the Duffy binding protein of Plasmodium vivax by assaying for natural antibodies. Allergy and Immunology Society of Sri Lanka (and FIMSA). Medical Research Council, Sri Lanka 03 - 05 Jan 2005

Human Antibody Responses to the Plamodium vivax DBP
N. K. Wansadhipathi-Kannangara 2004. Human Antibody Responses to the Plamodium vivax DBP. University Joint annual academic sessions, Faculties of Science and Medicine. University of Colombo, Sri Lanka 25 - 26 Jun 2004

Permalink - https://westminsterresearch.westminster.ac.uk/item/w5qwz/functional-analyses-of-differentially-expressed-isoforms-of-the-arabidopsis-inositol-phosphorylceramide-synthase


Share this

Usage statistics

39 total views
0 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.