Hydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection

Hassan O.J. Morad, Larissa Garcia-Pinto, Georgia Clayton, Foad Davoodbeglou, Arturo Monzon and Peter A. McNaughton 2025. Hydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection. Immuno. 5 (4) 47. https://doi.org/10.3390/immuno5040047

TitleHydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection
TypeJournal article
AuthorsHassan O.J. Morad, Larissa Garcia-Pinto, Georgia Clayton, Foad Davoodbeglou, Arturo Monzon and Peter A. McNaughton
Abstract

Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce organ damage and death. In this study, we use an animal model of bacterial infection originating in the peritoneum to show that hydrogen peroxide (H2O2, a potent neutrophil chemoattractant) is initially released in high concentrations both in the peritoneum and in multiple ‘off-target’ organs (lungs, liver and kidneys). The initial high H2O2 release inhibits neutrophil chemotaxis, but after 24 h concentrations of H2O2 reduce and can promote neutrophil migration to organs, where they release pro-inflammatory cytokines and chemokines along with NETs. The antimalarial compound artesunate potently inhibits neutrophil migration to off-target organs. It also abolishes cytokine, chemokine, and NET production, suggesting that artesunate may be a valuable novel therapy for preventing off-target organ inflammation associated with severe bacterial infections. Finally, the potency of H2O2 as a chemoattractant is shown by in vitro experiments in which, faced with competing gradients of H2O2 and other chemoattractants, neutrophils preferentially migrate towards H2O2.

Article number47
JournalImmuno
Journal citation5 (4)
Year2025
PublisherMDPI
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.3390/immuno5040047
Web address (URL)https://www.mdpi.com/2673-5601/5/4/47
Publication dates
Published08 Oct 2025

Related outputs

The paradox of NET involvement in the pathogenesis of inflammatory bowel disease
Hassan Oliver James Morad and Harriet Comer-Calder 2025. The paradox of NET involvement in the pathogenesis of inflammatory bowel disease. Inflammatory Bowel Diseases. https://doi.org/10.1093/ibd/izaf283

In sepsis hydrogen peroxide release accompanies neutrophil chemotaxis to organs, artesunate prevents this neutrophil-mediated organ infiltration, cytokine storm and NET release
Morad, H. 2024. In sepsis hydrogen peroxide release accompanies neutrophil chemotaxis to organs, artesunate prevents this neutrophil-mediated organ infiltration, cytokine storm and NET release. International Conference on Vaccines and Immunology . Paris, France 17 - 18 Oct 2024 Scientific Collegium.

Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
Morad, H.O.J., Luqman, S., Garcia Pinto, L., Cunningham, K., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 2022 (12) 11078. https://doi.org/10.1038/s41598-022-15214-6

Repurposing the antimalarial compound artemisinin as a novel therapy for inflammatory conditions
Morad, H. 2022. Repurposing the antimalarial compound artemisinin as a novel therapy for inflammatory conditions. Drug Repurposing II. Woburn House, London, UK 10 - 11 May 2022 The Biochemical Society.

Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release
Morad, H.O.J., Luqman, S., Pinto, L.G., Cunningham, K.P., Vilar, B., Clayton, G., Shankar-Hari, M. and McNaughton, P.A. 2022. Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release. Scientific Reports. 12 (1), pp. 1-18. https://doi.org/10.1038/s41598-022-15214-6

TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide
Hassan Morad, Suaib Luqman, Chun-Hsiang Tan and Peter McNaughton 2021. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Dynamic Cell IV. 14 - 19 Mar 2021 The Biochemical Society.

TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide
Morad, H. 2021. TRPM2 ion channels steer neutrophils towards a source of hydrogen peroxide. Scientific Reports. 11 (1), pp. 1-16. https://doi.org/10.1038/s41598-021-88224-5

Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs)
Hoffmann, R.M., Mele, S., Cheung, A., Larcombe-Young, D., Bucaite, G., Sachouli, E., Zlatareva, I., Morad, H., Marlow, R., McDonnell, J.M., Figini, M., Lacy, K.E., Tutt, A.J.N., Spicer, J.F., Thurston, D.E., Karagiannis, S.N. and Crescioli, S. 2020. Rapid conjugation of antibodies to toxins to select candidates for the development of anticancer Antibody-Drug conjugates (ADcs). Scientific Reports. 10 (1), pp. 1-11. https://doi.org/10.1038/s41598-020-65860-x

O30 Natural compounds affecting neutrophil migration
Hassan Morad, Suaib Luqman and Peter McNaughton 2017. O30 Natural compounds affecting neutrophil migration. ICMAN/ IUPHAR Natural Products. Aberdeen, Scotland 27 - 29 Sep 2017 Biochemical Pharmacology. https://doi.org/10.1016/j.bcp.2017.06.095

O30 Natural compounds affecting neutrophil migration
Morad, H., Luqman, S. and McNaughton, P. 2017. O30 Natural compounds affecting neutrophil migration. Biochemical Pharmacology. 139 (1), p. 119. https://doi.org/10.1016/j.bcp.2017.06.095

Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro
Morad, H. 2014. Time-course analysis of C3a and C5a quantifies the coupling between the upper and terminal Complement pathways in vitro. Royal Society of Medicine, Clinical Immunology and Allergy Conference. University of Cambridge Sep - Oct 2014 Royal Society of Medicine.

Permalink - https://westminsterresearch.westminster.ac.uk/item/x397q/hydrogen-peroxide-and-neutrophil-chemotaxis-in-a-mouse-model-of-bacterial-infection


Share this

Usage statistics

8 total views
2 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.