Abstract | Symmetry is an important cue in face and object perception. Here we used fMRI-guided transcranial magnetic stimulation (TMS) to shed light on the role of the occipital face area (OFA), a key region in face processing, and the lateral occipital (LO) cortex, a key area in object processing, in symmetry detection. In the first experiment, we applied TMS over the rightOFA, its left homolog (leftOFA), rightLO, and vertex (baseline) while participants were discriminating between symmetric and asymmetric dot patterns. Stimulation of rightOFA and rightLO impaired performance, causally implicating these two regions in detection of symmetry in low-level dot configurations. TMS over rightLO but not rightOFA also significantly impaired detection of nonsymmetric shapes defined by collinear Gabor patches, demonstrating that rightOFA responds to symmetry but not to all cues mediating figure-ground segregation. The second experiment showed a causal role for rightOFA but not rightLO in facial symmetry detection. Overall, our results demonstrate that both the rightOFA and rightLO are sensitive to symmetry in dot patterns, whereas only rightOFA is causally involved in facial symmetry detection. |
---|